Skip to main content

Neovascularization: Ocular Diseases, Animal Models and Therapies

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Neovascular ocular diseases (age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy) are the leading causes of blindness and are characterized by excessive new blood vessels either as choroidal neovascularization (CNV) or retinal neovascularization (RNV) which can be induced by the imbalance of growth factors. Animal models for these diseases provide valuable tools for studying the pathology, physiology, and mechanisms by which genes function and regulate these disease phenotypes. In this paper, we will review some recent studies using animal models and therapeutic treatments of these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzal A, Caballero S, Palii SS et al (2010) Targeting retinal and choroid neovascularization using the small molecule inhibitor carboxyamidotriazole. Brain Res Bull 81:320–326

    Article  PubMed  CAS  Google Scholar 

  • Barber AJ, Antonetti DA, Kern TS et al (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46:2210–2218

    Article  PubMed  Google Scholar 

  • Benny O, Nakai K, Yoshimura T et al (2010) Broad spectrum antiangiogenic treatment for ocular neovascular diseases. PLoS One 5 pII:e12515

    Google Scholar 

  • Bird AC (2010) Therapeutic targets in age-related macular disease. J Clin Invest 120:3033–3041

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Patil S, Seal S et al (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Hu Y, Zhou T et al (2009) Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol 175:2676–2685

    Article  PubMed  CAS  Google Scholar 

  • Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    Article  PubMed  Google Scholar 

  • Dorrell MI, Aguilar E, Jacobson R et al (2009) Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J Clin Invest 119:611–623

    Article  PubMed  CAS  Google Scholar 

  • Edwards AO, Malek G (2007) Molecular genetics of AMD and current animal models. Angiogenesis 10:119–132

    Article  PubMed  CAS  Google Scholar 

  • Ellis-Behnke R, Jonas JB (2011) Redefining tissue engineering for nanomedicine in ophthalmology. Acta Ophthalmol e108–e114

    Google Scholar 

  • Friedlander M (2009) Combination angiostatic therapies: targeting multiple angiogenic pathways. Retina 29:S27-29

    Article  PubMed  Google Scholar 

  • Gibson DL, Sheps SB, Schechter MT et al (1989) Retinopathy of prematurity: a new epidemic? Pediatrics 83:486–492

    PubMed  CAS  Google Scholar 

  • Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519

    Article  PubMed  Google Scholar 

  • Hu W, Jiang A, Liang J et al (2008) Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 49:407–415

    Article  PubMed  Google Scholar 

  • Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF. J Cell Physiol 218:66–74

    Article  PubMed  CAS  Google Scholar 

  • Lai CM, Dunlop SA, May LA et al (2005a) Generation of transgenic mice with mild and severe retinal neovascularisation. Br J Ophthalmol 89:911–916

    Article  PubMed  Google Scholar 

  • Lai CM, Shen WY, Brankov M et al (2005b) Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther 12:659–668

    Article  PubMed  CAS  Google Scholar 

  • Lamartina S, Cimino M, Roscilli G et al (2007) Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 9:862–874

    Article  PubMed  CAS  Google Scholar 

  • Limae Silva R, Shen J, Gong YY et al (2010) Agents that bind annexin A2 suppress ocular neovascularization. J Cell Physiol 225:855–864

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Wang D, Liu Y et al (2010) Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model. Invest Ophthalmol Vis Sci 51:3749–3757

    Article  PubMed  Google Scholar 

  • Marchetti V, Krohne TU, Friedlander DF et al (2010) Stemming vision loss with stem cells. J Clin Invest 120:3012–3021

    Article  PubMed  CAS  Google Scholar 

  • Ohno-Matsui K, Hirose A, Yamamoto S et al (2002) Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 160:711–719

    Article  PubMed  CAS  Google Scholar 

  • Otani A, Kinder K, Ewalt K et al (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010

    Article  PubMed  CAS  Google Scholar 

  • Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16:10–16

    Article  PubMed  CAS  Google Scholar 

  • Ricci B (1990) Oxygen-induced retinopathy in the rat model. Doc Ophthalmol 74:171–177

    Article  PubMed  CAS  Google Scholar 

  • Ritter MR, Banin E, Moreno SK et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276

    Article  PubMed  CAS  Google Scholar 

  • Rokoczy E, Rashman I, Binz N et al (2010) Characterization of a mouse model of hyperglycemia and retinal neovascularization. Am J Pathol 177

    Google Scholar 

  • Sapieha P, Joyal JS, Rivera JC et al (2010) Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 120:3022–3032

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Kumar A, Karakoti A, et al. (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–1820

    Google Scholar 

  • Takeda A, Baffi JZ, Kleinman ME et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230

    Article  PubMed  CAS  Google Scholar 

  • Tobe T, Ortega S, Luna JD et al (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Xie B, Shen J, Dong A et al (2009) Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J Cell Physiol 218:192–198

    Article  PubMed  CAS  Google Scholar 

  • Xiong SQ, Xia XB, Xu HZ et al (2009) Suppression of retinal neovascularization by small-­interference RNA targeting erythropoietin. Ophthalmologica 223:306–312

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka M, Kayo T, Ikeda T et al (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. McGinnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Cai, X., Sezate, S.A., McGinnis, J.F. (2012). Neovascularization: Ocular Diseases, Animal Models and Therapies. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_32

Download citation

Publish with us

Policies and ethics