Neovascularization: Ocular Diseases, Animal Models and Therapies

  • Xue Cai
  • Steven A. Sezate
  • James F. McGinnisEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


Neovascular ocular diseases (age-related macular degeneration, retinopathy of prematurity, and diabetic retinopathy) are the leading causes of blindness and are characterized by excessive new blood vessels either as choroidal neovascularization (CNV) or retinal neovascularization (RNV) which can be induced by the imbalance of growth factors. Animal models for these diseases provide valuable tools for studying the pathology, physiology, and mechanisms by which genes function and regulate these disease phenotypes. In this paper, we will review some recent studies using animal models and therapeutic treatments of these diseases.


Neovascularization Nanoceria Ocular diseases Animal models Nanoparticles Reactive oxygen species Diabetic retinopathy Age-related macular degeneration Retinopathy of prematurity VEGF PEDF CNV RNV Vldlr 


  1. Afzal A, Caballero S, Palii SS et al (2010) Targeting retinal and choroid neovascularization using the small molecule inhibitor carboxyamidotriazole. Brain Res Bull 81:320–326PubMedCrossRefGoogle Scholar
  2. Barber AJ, Antonetti DA, Kern TS et al (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Invest Ophthalmol Vis Sci 46:2210–2218PubMedCrossRefGoogle Scholar
  3. Benny O, Nakai K, Yoshimura T et al (2010) Broad spectrum antiangiogenic treatment for ocular neovascular diseases. PLoS One 5 pII:e12515Google Scholar
  4. Bird AC (2010) Therapeutic targets in age-related macular disease. J Clin Invest 120:3033–3041PubMedCrossRefGoogle Scholar
  5. Chen J, Patil S, Seal S et al (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150PubMedCrossRefGoogle Scholar
  6. Chen Y, Hu Y, Zhou T et al (2009) Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. Am J Pathol 175:2676–2685PubMedCrossRefGoogle Scholar
  7. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136PubMedCrossRefGoogle Scholar
  8. Dorrell MI, Aguilar E, Jacobson R et al (2009) Antioxidant or neurotrophic factor treatment preserves function in a mouse model of neovascularization-associated oxidative stress. J Clin Invest 119:611–623PubMedCrossRefGoogle Scholar
  9. Edwards AO, Malek G (2007) Molecular genetics of AMD and current animal models. Angiogenesis 10:119–132PubMedCrossRefGoogle Scholar
  10. Ellis-Behnke R, Jonas JB (2011) Redefining tissue engineering for nanomedicine in ophthalmology. Acta Ophthalmol e108–e114Google Scholar
  11. Friedlander M (2009) Combination angiostatic therapies: targeting multiple angiogenic pathways. Retina 29:S27-29PubMedCrossRefGoogle Scholar
  12. Gibson DL, Sheps SB, Schechter MT et al (1989) Retinopathy of prematurity: a new epidemic? Pediatrics 83:486–492PubMedGoogle Scholar
  13. Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519PubMedCrossRefGoogle Scholar
  14. Hu W, Jiang A, Liang J et al (2008) Expression of VLDLR in the retina and evolution of subretinal neovascularization in the knockout mouse model’s retinal angiomatous proliferation. Invest Ophthalmol Vis Sci 49:407–415PubMedCrossRefGoogle Scholar
  15. Jiang J, Xia XB, Xu HZ et al (2009) Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1alpha and VEGF. J Cell Physiol 218:66–74PubMedCrossRefGoogle Scholar
  16. Lai CM, Dunlop SA, May LA et al (2005a) Generation of transgenic mice with mild and severe retinal neovascularisation. Br J Ophthalmol 89:911–916PubMedCrossRefGoogle Scholar
  17. Lai CM, Shen WY, Brankov M et al (2005b) Long-term evaluation of AAV-mediated sFlt-1 gene therapy for ocular neovascularization in mice and monkeys. Mol Ther 12:659–668PubMedCrossRefGoogle Scholar
  18. Lamartina S, Cimino M, Roscilli G et al (2007) Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 9:862–874PubMedCrossRefGoogle Scholar
  19. Limae Silva R, Shen J, Gong YY et al (2010) Agents that bind annexin A2 suppress ocular neovascularization. J Cell Physiol 225:855–864PubMedCrossRefGoogle Scholar
  20. Liu X, Wang D, Liu Y et al (2010) Neuronal-driven angiogenesis: role of NGF in retinal neovascularization in an oxygen-induced retinopathy model. Invest Ophthalmol Vis Sci 51:3749–3757PubMedCrossRefGoogle Scholar
  21. Marchetti V, Krohne TU, Friedlander DF et al (2010) Stemming vision loss with stem cells. J Clin Invest 120:3012–3021PubMedCrossRefGoogle Scholar
  22. Ohno-Matsui K, Hirose A, Yamamoto S et al (2002) Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am J Pathol 160:711–719PubMedCrossRefGoogle Scholar
  23. Otani A, Kinder K, Ewalt K et al (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010PubMedCrossRefGoogle Scholar
  24. Pechan P, Rubin H, Lukason M et al (2009) Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther 16:10–16PubMedCrossRefGoogle Scholar
  25. Ricci B (1990) Oxygen-induced retinopathy in the rat model. Doc Ophthalmol 74:171–177PubMedCrossRefGoogle Scholar
  26. Ritter MR, Banin E, Moreno SK et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116:3266–3276PubMedCrossRefGoogle Scholar
  27. Rokoczy E, Rashman I, Binz N et al (2010) Characterization of a mouse model of hyperglycemia and retinal neovascularization. Am J Pathol 177Google Scholar
  28. Sapieha P, Joyal JS, Rivera JC et al (2010) Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest 120:3022–3032PubMedCrossRefGoogle Scholar
  29. Singh S, Kumar A, Karakoti A, et al. (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 6:1813–1820Google Scholar
  30. Takeda A, Baffi JZ, Kleinman ME et al (2009) CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 460:225–230PubMedCrossRefGoogle Scholar
  31. Tobe T, Ortega S, Luna JD et al (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646PubMedCrossRefGoogle Scholar
  32. Xie B, Shen J, Dong A et al (2009) Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J Cell Physiol 218:192–198PubMedCrossRefGoogle Scholar
  33. Xiong SQ, Xia XB, Xu HZ et al (2009) Suppression of retinal neovascularization by small-­interference RNA targeting erythropoietin. Ophthalmologica 223:306–312PubMedCrossRefGoogle Scholar
  34. Yoshioka M, Kayo T, Ikeda T et al (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xue Cai
    • 1
  • Steven A. Sezate
    • 1
  • James F. McGinnis
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Ophthalmology, Dean McGee Eye InstituteUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  3. 3.Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations