Skip to main content

Gene Delivery of Wild-Type Rhodopsin Rescues Retinal Function in an Autosomal Dominant Retinitis Pigmentosa Mouse Model

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Autosomal dominant retinitis pigmentosa (ADRP) is frequently caused by mutations within the gene for the opsin of rod photoreceptor cells. Studies on transgenic mice, carrying mutated rhodopsin (RHO) transgene on different genetic backgrounds, suggested that an increased amount of wild-type RHO in ADRP photoreceptors attenuated the impact of the mutant transgene. Therefore, we employed a gene therapy approach with the help of Adeno-associated virus (AAV) to treat mice expressing a P23H mutant human RHO transgene. Knowing that AAV5 primarily transduces photoreceptor cells, we designed “hardened” form of the rhodopsin gene (RHO301) that expressed normal rhodopsin and was specifically resistant to degradation by the previously tested siRNA301. AAV5 RHO301 was subretinaly injected into the right eyes of P23H RHO mice at postnatal day 15. Animals were analyzed monthly by electroretinography (ERG) for 6 months. Analysis of the full-field scotopic electroretinogram (ERG) demonstrated that increased expression of opsin slowed the rate of retinal degeneration in P23H mice with increased amplitudes in both a-wave and b-wave amplitudes compared to control eyes. An increase in the ERG amplitudes was correlated with improvement of retinal structure. The thickness of the outer nuclear layer in AAV-RHO301-injected eyes was increased by 80% compared to control eyes. This finding indicates that wild-type RHO could rescue the retinal degeneration in transgenic mice carrying a dominant RHO mutation and that increased production of normal rhodopsin could suppress the effect of the mutant protein. These findings suggest that wild-type RHO can be used as a therapeutic agent to retard retinal degeneration in ADRP caused by different mutations of RHO via increased production of normal rhodopsin protein.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bainbridge JWB, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  PubMed  CAS  Google Scholar 

  • Bush RA, Kononen L, Machida S et al (2000) The effect of calcium channel blocker diltiazem on photoreceptor degeneration in the rhodopsin Pro23His rat. Invest Ophthalmol Vis Sci 41:2697–2701

    PubMed  CAS  Google Scholar 

  • Cashman SM, Binkley EA, Kumar-Singh R (2005) Towards mutation-independent silencing of genes involved in retinal degeneration by RNA interference. Gene Ther 12:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20:999-1004

    Article  PubMed  CAS  Google Scholar 

  • Daiger SP, Bowne SJ, Sullivan LS (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125:151–158

    Article  PubMed  CAS  Google Scholar 

  • Dryja TP, McGee TL, Reichel E et al (1990) A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 343:364–366

    Article  PubMed  CAS  Google Scholar 

  • Farrar GJ, Kenna PF, Humphries P (2002) On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 21:857–864

    Article  PubMed  CAS  Google Scholar 

  • Frederick JM, Krasnoperova NV, Hoffmann K et al (2001) Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 42:826–833

    PubMed  CAS  Google Scholar 

  • Galy A, Roux MJ, Sahel JA et al (2005) Rhodopsin maturation defects induce photoreceptor death by apoptosis: a fly model for RhodopsinPro23His human retinitis pigmentosa. Hum Mol Genet 14:2547–2557

    Article  PubMed  CAS  Google Scholar 

  • Georgiadis A, Tschernutter M, Bainbridge JW et al (2010) AAV-mediated knockdown of peripherin-2 in vivo using miRNA-based hairpins. Gene Ther 17:486–493

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk M, Justilien V, Liu J et al (2007a) Preservation of photoreceptor morphology P23H rats using an allele independent and function in ribozyme. Exp Eye Res 84:44–52

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk M, Justilien V, Liu J et al (2007b) Suppression of mouse rhodopsin expression in vivo by AAV mediated siRNA delivery. Vis Res 47:1202–1208

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk MS, Hauswirth WW, Lewin AS (2008) Gene therapy for mouse models of ADRP. Adv Exp Med Biol 613:107–112

    Article  PubMed  CAS  Google Scholar 

  • Gorbatyuk MS, Timmers AMM, Pang JJ et al (2005a) Rescue of vision in P23H rats with an rAAV delivered ribozyme targeting mouse opsin. Invest Ophthalmol Vis Sci 46

    Google Scholar 

  • Gorbatyuk MS, Pang JJ, Thomas J et al (2005b) Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Mol Vis 11:648–656

    PubMed  CAS  Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Article  PubMed  CAS  Google Scholar 

  • Kiang AS, Palfi A, Ader M et al (2005) Toward a gene therapy for dominant disease: validation of an RNA interference-based mutation-independent approach. Mol Ther 12:555–561

    Article  PubMed  CAS  Google Scholar 

  • Lewin AS, Drenser KA, Hauswirth WW et al (1998) Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med 4:967–971

    Article  PubMed  CAS  Google Scholar 

  • Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185

    Article  PubMed  CAS  Google Scholar 

  • Olsson JE, Gordon JW, Pawlyk BS et al (1992) Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 9:815–830

    Article  PubMed  CAS  Google Scholar 

  • Organisciak DT, Darrow RM, Barsalou L et al (2003) Susceptibility to retinal light damage in transgenic rats with rhodopsin mutations. Invest Ophthalmol Vis Sci 44:486–492

    Article  PubMed  Google Scholar 

  • Ranchon I, LaVail MM, Kotake Y et al (2003) Free radical trap phenyl-N-tert-butylnitrone protects against light damage but does not rescue P23H and S334ter rhodopsin transgenic rats from inherited retinal degeneration. J Neurosci 23:6050–6057

    PubMed  CAS  Google Scholar 

  • Roof DJ, Adamian M, Hayes A (1994) Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene. Invest Ophthalmol Vis Sci 35:4049–4062

    PubMed  CAS  Google Scholar 

  • Simonelli F, Maguire AM, Testa F et al (2010) Gene Therapy for Leber’s Congenital Amaurosis is Safe and Effective Through 1.5 Years After Vector Administration. Mol Ther 18:643–650

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Pietras KM, Shin BJ et al (2002) Hammerhead ribozymes designed to cleave all human rod opsin mRNAs which cause autosomal dominant retinitis pigmentosa. Mol Vis 8:102–113

    PubMed  CAS  Google Scholar 

  • Tam BM, Moritz OL (2006) Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 47:3234–3241

    Article  PubMed  Google Scholar 

  • Tessitore A, Parisi F, Denti MA et al (2006) Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol Ther 14:692–699

    Article  PubMed  CAS  Google Scholar 

  • Timmers A, Zhang H, Squitieri A et al (2001) Subretinal injections in rodent eyes: effects on electro­physiology and histology of rat retina. Mol Vis 7:131–137

    PubMed  CAS  Google Scholar 

  • van Soest S, Westerveld A, de Jong PT et al (1999) Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 43:321–334

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyu Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Mao, H., Gorbatyuk, M.S., Hauswirth, W.W., Lewin, A.S. (2012). Gene Delivery of Wild-Type Rhodopsin Rescues Retinal Function in an Autosomal Dominant Retinitis Pigmentosa Mouse Model. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_27

Download citation

Publish with us

Policies and ethics