The Mechanism of Fenretinide (4-HPR) Inhibition of β-carotene Monooxygenase 1. New Suspect for the Visual Side Effects of Fenretinide

  • Eugenia Poliakov
  • Alexander Gubin
  • James Laird
  • Susan Gentleman
  • Robert G. Salomon
  • T. Michael RedmondEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


Fenretinide (4-hydroxy(phenyl)retinamide; 4-HPR), a synthetic retinoid derivative, shows anticancer potential in clinical trials for treatment of breast cancer. Common side effects associated with fenretinide treatment include night blindness initially attributed to inhibition of RBP4 (retinol-binding protein 4)-binding to retinol and consequent impaired retinol transport. However, fenretinide affects RBP4−/− animals similarly to wild-type mice, and thus, the reason for the effects of fenretinide remains elusive. It has been suggested that ®-carotene monooxygenase 1 (BCMO1) might supply all-trans retinal as an accessory source of vitamin A for the visual cycle. We found that fenretinide is a strong inhibitor of mouse BCMO1 (K i ∼ 1.2 μM), acting noncompetitively. In contrast, other retinoids, such as retinyl palmitate and retinyl acetate, as well as other biologically active aromatic compounds (capsaicin and resveratrol, and the amino analog of fenretinide) do not substantially inhibit BCMO1 activity. To study the mechanism of inhibition, we deleted portion of an interstrand loop of BCMO1 (metazoan loop) to generate BCMO1⊗336-345. This mutant had impaired enzymatic activity, but was not substantially inhibited by fenretinide. Thus, we demonstrate that fenretinide is a strong noncompetitive inhibitor of BCMO1 and that the metazoan loop influences binding of this retinoid. Our data point to an additional mechanism of fenretinide-induced night blindness through inhibition of BCMO1.


®-carotene monooxygenase 1 BCMO1 β-carotene Fenretinide 4-HPR Noncompetitive inhibition Retinoid 



We would like to thank Dr. K. Palczewski for the enthusiastic support of this project. We would like to acknowledge Dr. W. Samuel for kindly providing fenretinide.


  1. Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201PubMedCrossRefGoogle Scholar
  2. Berni R, Clerici M, Malpeli G et al (1993) Retinoids: in vitro interaction with retinol-binding protein and influence on plasma retinol. Faseb J 7:1179–1184PubMedGoogle Scholar
  3. Camerini T, Mariani L, De Palo G et al (2001) Safety of the synthetic retinoid fenretinide: long-term results from a controlled clinical trial for the prevention of contralateral breast cancer. J Clin Oncol 19:1664–1670PubMedGoogle Scholar
  4. Chichili GR, Nohr D, Schaffer M et al (2005) beta-Carotene conversion into vitamin A in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 46:3562–3569PubMedCrossRefGoogle Scholar
  5. Formelli F, Carsana R, Costa A et al (1989) Plasma retinol level reduction by the synthetic retinoid fenretinide: a one year follow-up study of breast cancer patients. Cancer Res 49:6149–6152PubMedGoogle Scholar
  6. Golczak M, Maeda A, Bereta G et al (2008) Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. J Biol Chem 283:9543–9554PubMedCrossRefGoogle Scholar
  7. He X, Raymon LP, Mattson MV et al (1993) Further studies of the structure-activity relationships of 1-[1-(2-benzo[b]thienyl)cyclohexyl]piperidine. Synthesis and evaluation of 1-(2-benzo[b]thienyl)-N,N-dialkylcyclohexylamines at dopamine uptake and phencyclidine binding sites. J Med Chem 36:4075–4081PubMedCrossRefGoogle Scholar
  8. Kiefer F, Arnold K, Kunzli M et al (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–392PubMedCrossRefGoogle Scholar
  9. Kiser PD, Golczak M, Lodowski DT et al (2009) Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. Proc Natl Acad Sci U S A 106:17325–17330PubMedCrossRefGoogle Scholar
  10. Kloer DP, Ruch S, Al-Babili S et al (2005) The structure of a retinal-forming carotenoid oxygenase. Science 308:267–269PubMedCrossRefGoogle Scholar
  11. Lewis KC, Zech LA, Phang JM (1996) Effects of chronic administration of N-(4-hydroxyphenyl) retinamide (4-HPR) in rats on vitamin A metabolism in the eye. Eur J Cancer 32A:1803–1808PubMedCrossRefGoogle Scholar
  12. Motani A, Wang Z, Conn M et al (2009) Identification and characterization of a non-retinoid ligand for retinol-binding protein 4 which lowers serum retinol-binding protein 4 levels in vivo. J Biol Chem 284:7673–7680PubMedCrossRefGoogle Scholar
  13. Poliakov E, Gentleman S, Cunningham FX, Jr. et al (2005) Key role of conserved histidines in recombinant mouse beta-carotene 15,15′-monooxygenase-1 activity. J Biol Chem 280:29217–29223PubMedCrossRefGoogle Scholar
  14. Poliakov E, Gentleman S, Chander P et al (2009) Biochemical evidence for the tyrosine involvement in cationic intermediate stabilization in mouse beta-carotene 15, 15′-monooxygenase. BMC Biochem 10:31PubMedCrossRefGoogle Scholar
  15. Preitner F, Mody N, Graham TE et al (2009) Long-term Fenretinide treatment prevents high-fat diet-induced obesity, insulin resistance, and hepatic steatosis. Am J Physiol Endocrinol Metab 297:E1420–1429PubMedCrossRefGoogle Scholar
  16. Qian H (2008) Cooperativity and specificity in enzyme kinetics: a single-molecule time-based perspective. Biophys J 95:10–17PubMedCrossRefGoogle Scholar
  17. Radu RA, Han Y, Bui TV et al (2005) Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 46:4393–4401PubMedCrossRefGoogle Scholar
  18. Trott O, Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedGoogle Scholar
  19. Veronesi U, Mariani L, Decensi A et al (2006) Fifteen-year results of a randomized phase III trial of fenretinide to prevent second breast cancer. Ann Oncol 17:1065–1071PubMedCrossRefGoogle Scholar
  20. Yoon NM, Brown HC (1968) Selective Reductions.12. Explorations in Some Representative Applications of Aluminum Hydride for Selective Reductions. J Am Chem Soc 90:2927CrossRefGoogle Scholar
  21. Zanotti G, Berni R (2004) Plasma retinol-binding protein: structure and interactions with retinol, retinoids, and transthyretin. Vitam Horm 69:271–295PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Eugenia Poliakov
    • 1
  • Alexander Gubin
    • 1
  • James Laird
    • 2
  • Susan Gentleman
    • 1
  • Robert G. Salomon
    • 2
  • T. Michael Redmond
    • 1
    Email author
  1. 1.LRCMB, National Eye Institute, NIHBethesdaUSA
  2. 2.Department of ChemistryCase Western Reserve UniversityClevelandUSA

Personalised recommendations