Skip to main content

Relieving Bottlenecks in RNA Drug Discovery for Retinal Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

The development of efficacious and safe post transcriptional gene silencing (PTGS) agents is a challenging scientific endeavor that embraces “biocomplexity” at many levels. The target mRNA exhibits a level of structural complexity that profoundly limits annealing of PTGS agents. PTGS agents are macromolecular RNAs that must be designed to fold into catalytically active structures able to cleave the target mRNA. Pushing into and beyond the biological complexity requires new technologies for high throughput screening to efficiently and rapidly assess a set of biological and experimental variables engaged in RNA drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelmaksoud H, Yau EH, Zuker M et al (2009) Development of lead hammerhead ribozyme candidates against human rod opsin for retinal degeneration therapy. Exp. Eye Res 88:859–879

    Article  PubMed  CAS  Google Scholar 

  • Allawi HT, Dong F, Ip HS et al (2001) Mapping of RNA accessible sites by extension of random oligonucleotide libraries with reverse transcriptase. RNA 7:314–327

    Article  PubMed  CAS  Google Scholar 

  • Boon CJF, den Hallander AI, Hoyng CB et al (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Ret Eye Res 27:213–225

    Article  CAS  Google Scholar 

  • Butler MC, Sullivan JM (2010) A novel real-time in vivo mouse retinal imaging system. Invest Ophthalmol Vis Sci 51:3103

    Article  Google Scholar 

  • Den Hollander AI, Black A, Bennet J et al (2010). Lighting a candle in the dark: advances in ­genetics and gene therapy of recessive retinal dystrophies. J Clin Invest 120: 3042–3053

    Article  Google Scholar 

  • Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32 (supp):W135-W141

    Google Scholar 

  • Farjo R, Skaggs J, Quiambao AB et al (2006) Efficient non-viral ocular gene transfer with ­compacted DNA nanoparticles. PLoS One 1:e38

    Article  PubMed  Google Scholar 

  • Flannery JG, Zolotukhin S, Vaquero MI et al (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A 94:6916–6921

    Article  PubMed  CAS  Google Scholar 

  • Ho SP, Bao Y, Lesher T, Malhotra R et al (1998) Mapping of RNA accessible sites for antisense experiments with oligonucleotide libraries. Nat Biotechnol 16:56–63

    Article  Google Scholar 

  • Khvorova A, Lescoute A, Westhof E et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nature Struct Biol 10: 708–712

    Article  PubMed  CAS  Google Scholar 

  • Koseki S, Tanabe T, Tani K et al (1999) Factors governing the activity in vivo of ribozymes ­transcribed by RNA polymerase III. J Virol 73:1868–1877

    PubMed  CAS  Google Scholar 

  • Lieber A, Strauss M (1995) Selection of efficient cleavage sites in target mRNAs by using a ribozyme expression library. MolCell. Biol 15:540–551

    CAS  Google Scholar 

  • Mathews DH, Burkard ME, Freier SM et al (1999) Predicting oligonucleotide affinity to nucleic acid targets. RNA 5:1458–1469

    Article  PubMed  CAS  Google Scholar 

  • Stage-Zimmermann TK, Uhlenbeck OC (1998) Hammerhead ribozyme kinetics. RNA 4:875–889

    Article  PubMed  CAS  Google Scholar 

  • Sullivan JM, Taggart RT (2007) Novel and enhanced approaches to determined local mRNA ­accessibility. Invest Ophthalmol Vis Sci 48:4605

    Article  Google Scholar 

  • Yau EH, Sullivan JM (2007) High throughput cellular screening for ribozyme development against arbitrary mRNA targets. Invest Ophthalmol Vis Sci 48:1681

    Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Eye Institute (R01 EY13433, PI: Sullivan) (R24 EY016662, PI: M Slaughter), the Veterans Administration (Merit Grant 1I01BX000669-01), an Unrestricted grant from Research to Prevent Blindness, and a grant from the Oishei Foundation (Buffalo, NY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack M. Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sullivan, J.M., Yau, E.H., Taggart, R.T., Butler, M.C., Kolniak, T.A. (2012). Relieving Bottlenecks in RNA Drug Discovery for Retinal Diseases. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_20

Download citation

Publish with us

Policies and ethics