Autophagy in the Retina: A Potential Role in Age-Related Macular Degeneration

  • Sayak K. Mitter
  • Haripriya Vittal Rao
  • Xiaoping Qi
  • Jun Cai
  • Andrew Sugrue
  • William A. DunnJr.
  • Maria B. Grant
  • Michael E. BoultonEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 723)


Age-related macular degeneration (AMD) is associated with multiple genetic and cellular defects which lead to a common endpoint, retinal degeneration. Aging and oxidative stress, significant features in the pathogenesis of AMD, are associated with an increase in damaged intracellular organelles and defective autophagy flux in a range of age-related and neurodegenerative diseases. Autophagy is a key process in the maintenance of cellular homeostasis that serves to remove dysfunctional organelles and proteins. Autophagy proteins are strongly expressed in the retina and there is now strong evidence that mitochondrial damage and defective autophagy are a feature of the aging retina and that this is further exacerbated in AMD. It is apparent that autophagy makes a significant contribution to lipofuscin accumulation in the RPE. Pharmacological manipulation of autophagy may offer an alternative therapeutic target in AMD.


Autophagy Retinal pigment epithelium Age-related macular ­degeneration Retina Mitochondria Lipofuscin Oxidative damage 



This work was funded by NIH grant EY019688 and AHAF grant M2009024.


  1. Bergmann M, Schutt F, Holz FG et al (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18:562–564PubMedGoogle Scholar
  2. Boulton M, McKechnie NM, Breda J et al (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30:82–89PubMedGoogle Scholar
  3. Boulton ME (2009) Lipofuscin of the RPE. In: Fundus Autofluorescence (Lois M, Forrester J, eds), pp 14–26 Philadelphia: Lipincott; Williams and WilkinsGoogle Scholar
  4. Burke JM, Skumatz CM (1998) Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci 39:1478–1486PubMedGoogle Scholar
  5. Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24:604–612PubMedCrossRefGoogle Scholar
  6. Dunn WA, Jr. (1990) Studies on the mechanisms of autophagy: formation of the autophagic ­vacuole. J Cell Biol 110:1923–1933PubMedCrossRefGoogle Scholar
  7. Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:859–864PubMedCrossRefGoogle Scholar
  8. Hamasaki M, Yoshimori T (2010) Where do they come from? Insights into autophagosome ­formation. FEBS Lett 584:1296–1301PubMedCrossRefGoogle Scholar
  9. Iwasaki M, Inomata H (1988) Lipofuscin granules in human photoreceptor cells. Invest Ophthalmol Vis Sci 29:671–679PubMedGoogle Scholar
  10. Jarrett SG, Lewin AS, Boulton ME (2010) The importance of mitochondria in age-related and inherited eye disorders. Ophthalmic Res 44:179–190PubMedCrossRefGoogle Scholar
  11. Kaarniranta K (2010) Autophagy--hot topic in AMD. Acta Ophthalmol 88:387–388PubMedCrossRefGoogle Scholar
  12. Kaarniranta K, Salminen A, Eskelinen EL et al (2009) Heat shock proteins as gatekeepers of proteolytic pathways-Implications for age-related macular degeneration (AMD). Ageing Res Rev 8:128–139PubMedCrossRefGoogle Scholar
  13. Kawai A, Uchiyama H, Takano S et al (2007) Autophagosome-lysosome fusion depends on the pH in acidic compartments in CHO cells. Autophagy 3:154–157PubMedGoogle Scholar
  14. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162PubMedCrossRefGoogle Scholar
  15. Kim SH, Munemasa Y, Kwong JM et al (2008) Activation of autophagy in retinal ganglion cells. J Neurosci Res 86:2943–2951PubMedCrossRefGoogle Scholar
  16. Kirkin V, McEwan DG, Novak I et al (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269PubMedCrossRefGoogle Scholar
  17. Knoferle J, Koch JC, Ostendorf T et al (2010) Mechanisms of acute axonal degeneration in the optic nerve in vivo. Proc Natl Acad Sci U S A 107:6064–6069PubMedCrossRefGoogle Scholar
  18. Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223PubMedGoogle Scholar
  19. Korolchuk VI, Mansilla A, Menzies FM et al (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol Cell 33:517–527PubMedCrossRefGoogle Scholar
  20. Krohne TU, Stratmann NK, Kopitz J et al (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90:465–471PubMedCrossRefGoogle Scholar
  21. Kunchithapautham K, Rohrer B (2007) Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy 3:433–441PubMedGoogle Scholar
  22. Kurz T, Karlsson M, Brunk UT et al (2009) ARPE-19 retinal pigment epithelial cells are highly resistant to oxidative stress and exercise strict control over their lysosomal redox-active iron. Autophagy 5:494–501PubMedCrossRefGoogle Scholar
  23. Lieberthal W (2008) Macroautophagy: a mechanism for mediating cell death or for promoting cell survival? Kidney Int 74:555–557PubMedCrossRefGoogle Scholar
  24. Liu J, Lu W, Reigada D et al (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(−/−) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49:772–780PubMedCrossRefGoogle Scholar
  25. Luzio JP, Pryor PR, Bright NA (2007) Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632PubMedCrossRefGoogle Scholar
  26. Marino G, Madeo F, Kroemer G (2010) Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell BiolGoogle Scholar
  27. Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238–14243PubMedCrossRefGoogle Scholar
  28. Pattingre S, Tassa A, Qu X et al (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939PubMedCrossRefGoogle Scholar
  29. Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52PubMedCrossRefGoogle Scholar
  30. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595PubMedCrossRefGoogle Scholar
  31. Reme C, Wirz-Justice A (1985) [Circadian rhythm, the retina and light]. Klin Monbl Augenheilkd 186:175–179PubMedCrossRefGoogle Scholar
  32. Reme CE, Young RW (1977) The effects of hibernation on cone visual cells in the ground squirrel. Invest Ophthalmol Vis Sci 16:815–840PubMedGoogle Scholar
  33. Rosenbaum DM, Degterev A, David J et al (2010) Necroptosis, a novel form of caspase-­independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res 88:1569–1576PubMedGoogle Scholar
  34. Ryhanen T, Hyttinen JM, Kopitz J et al (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment ­epithelial cells. J Cell Mol Med 13:3616–3631PubMedCrossRefGoogle Scholar
  35. Seibenhener ML, Geetha T, Wooten MW (2007) Sequestosome 1/p62--more than just a scaffold. FEBS Lett 581:175–179PubMedCrossRefGoogle Scholar
  36. Settembre C, Fraldi A, Jahreiss L et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17:119–129PubMedCrossRefGoogle Scholar
  37. Viiri J, Hyttinen JM, Ryhanen T et al (2010) p62/sequestosome 1 as a regulator of proteasome inhibitor-induced autophagy in human retinal pigment epithelial cells. Mol Vis 16:1399–1414PubMedGoogle Scholar
  38. Wang AL, Lukas TJ, Yuan M et al (2009a) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4:e4160PubMedCrossRefGoogle Scholar
  39. Wang AL, Boulton ME, Dunn WA, Jr. et al (2009b) Using LC3 to monitor autophagy flux in the retinal pigment epithelium. Autophagy 5:1190–1193PubMedCrossRefGoogle Scholar
  40. Wang T, Lao U, Edgar BA (2009c) TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 186:703–711PubMedCrossRefGoogle Scholar
  41. Wu BX, Darden AG, Laser M et al (2006) The rat Apg3p/Aut1p homolog is upregulated by ­ischemic preconditioning in the retina. Mol Vis 12:1292–1302PubMedGoogle Scholar
  42. Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2:1542–1552PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Sayak K. Mitter
    • 1
  • Haripriya Vittal Rao
    • 1
  • Xiaoping Qi
    • 1
  • Jun Cai
    • 1
  • Andrew Sugrue
    • 1
  • William A. DunnJr.
    • 1
  • Maria B. Grant
    • 2
  • Michael E. Boulton
    • 1
    Email author
  1. 1.Department of Anatomy and Cell BiologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Pharmacology and TherapeuticsUniversity of FloridaGainesvilleUSA

Personalised recommendations