Skip to main content

Protein Tyrosine Phosphatase 1B: A Novel Molecular Target for Retinal Degenerative Diseases

  • Conference paper
  • First Online:
Book cover Retinal Degenerative Diseases

Abstract

Protein tyrosine phosphatase 1B (PTP1B) is considered as a major negative regulator of insulin receptor (IR) signaling. IR signaling in retina has been demonstrated to be neuroprotective. Photoreceptor-specific deletion of PTP1B results in enhanced retinal IR-mediated neuroprotection indicating the importance of PTP1B as a negative regulator in the retina. Elevated levels of retinal PTP1B activity have been observed in mice lacking retinal pigment epithelium (Rpe65−/−), a mouse model of leber congenital amaurosis (LCA-type 2), retinitis pigmentosa and diabetic retinopathy animal models. This enhanced PTP1B activity could downregulate the IR signaling which may contribute to the death of photoreceptor neurons and ultimately lead to retinal degenerations. The potential therapeutic agents that specifically reduce or inhibit the PTP1B activity could be beneficial in protecting or delaying the photoreceptor cell death in the retinal degenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Li PM, Meyerovitch J et al (1995) Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J Biol Chem 270:20503–20508

    Article  PubMed  CAS  Google Scholar 

  • Barber AJ, Lieth E, Khin SA et al (1998) Neural apoptosis in the retina during experimental and human diabetes: early onset and effect of insulin. J Clin Invest 102:783–791

    Article  PubMed  CAS  Google Scholar 

  • Barber AJ, Nakamura M, Wolpert EB et al (2001) Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 276:32814–32821

    Article  PubMed  CAS  Google Scholar 

  • Barford D, Flint AJ, Tonks NK (1994) Crystal structure of human protein tyrosine phosphatase 1B. Science 263:1397–1404

    Article  PubMed  CAS  Google Scholar 

  • Bence KK, Delibegovic M, Xue B et al (2006) Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 12:917–924

    Article  PubMed  CAS  Google Scholar 

  • Buckley DA, Cheng A, Kiely PA et al (2002) Regulation of insulin-like growth factor type I (IGF-I) receptor kinase activity by protein tyrosine phosphatase 1B (PTP-1B) and enhanced IGF-I-mediated suppression of apoptosis and motility in PTP-1B-deficient fibroblasts. Mol Cell Biol 22:1998–2010

    Article  PubMed  CAS  Google Scholar 

  • Byon JC, Kusari AB, Kusari J (1998) Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol Cell Biochem 182:101–108

    Article  PubMed  CAS  Google Scholar 

  • Calera, M.R, Vallega G, Pilch PF (2000) Dynamics of protein-tyrosine phosphatases in rat adipocytes. J Biol Chem 275:6308–6312

    Article  PubMed  CAS  Google Scholar 

  • Combs AP (2010) Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem 53:2333–2344

    Article  PubMed  CAS  Google Scholar 

  • Cook WS and Unger RH (2002) Protein tyrosine phosphatase 1B: a potential leptin resistance factor of obesity. Dev Cell 2:385–387

    Article  PubMed  CAS  Google Scholar 

  • Dadke S, Kusari J, Chernoff J (2000) Down-regulation of insulin signalling by protein-tyrosine phosphatase 1B is mediated by an N-terminal binding region. J Biol Chem 275:23642–23647

    Article  PubMed  CAS  Google Scholar 

  • Datta SR, Brunet A, Greenberg ME (1999) Cellular survival: a play in three Akts. Genes Dev 13:2905–2927

    Article  PubMed  CAS  Google Scholar 

  • Delibegovic M, Zimmer D, Kauffman C et al (2009) Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58:590–599

    Article  PubMed  CAS  Google Scholar 

  • Dudek H, Datta SR, Franke TF, et al (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  PubMed  CAS  Google Scholar 

  • Elchebly M, Payette P, Michaliszyn E et al (1999) Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548

    Article  PubMed  CAS  Google Scholar 

  • Flint AJ, Tiganis T, Barford D, Tonks NK (1997) Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc Natl Acad Sci USA 94:1680–1685

    Article  PubMed  CAS  Google Scholar 

  • Frangioni JV, Beahm PH, Shifrin V et al (1992) The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68:545–560

    Article  PubMed  CAS  Google Scholar 

  • Goldstein BJ, Ahmad F, Ding W et al (1998) Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol Cell Biochem 182:91–99

    Article  PubMed  CAS  Google Scholar 

  • Gu F, Dube N, Kim JW et al (2003) Protein tyrosine phosphatase 1B attenuates growth-hormone-mediated JAk2-STAT signaling. Mol Cell Biol 23:3753–3762

    Article  PubMed  CAS  Google Scholar 

  • Haj FG, Markova B, Klaman LD et al (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278:739–744

    Article  PubMed  CAS  Google Scholar 

  • Haj FG, Verveer PJ, Squire A et al (2002) Imaging sites of receptor dephosphorylation by PTP1B on the surface of the endoplasmic reticulum. Science 295:1708–1711

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic I, Le YZ, Anderson RE, Rajala RV (2009) Deletion of the p85 regulatory subunit of phosphoinositide 3-kinase in cone photoreceptor cells results in cone photoreceptor degeneration. ARVO abstract A389

    Google Scholar 

  • Jia Z, Barford D, Flint AJ et al (2001) Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase-1B. Science 268:1754–1758

    Article  Google Scholar 

  • Klaman LD, Boss O, Peroni OD et al (2000) Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase1B-deficientmice. Mol Cell Biol 20:5479–5489

    Article  PubMed  CAS  Google Scholar 

  • Myers MP, Anderson NJ, Cheng A et al (2001) TYK2 and JAK2 are substrates of protein tyrosine phosphatase 1B. J Biol Chem 276:47771–47774

    Article  PubMed  CAS  Google Scholar 

  • Ostman A and Böhmer FD (2001) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases. Trends Cell Biol 11:258–266

    Article  PubMed  CAS  Google Scholar 

  • Punzo C, Kornacker K, Cepko CL (2009) Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 12:44–52

    Article  PubMed  CAS  Google Scholar 

  • Rajala A, Tanito M, Le YZ et al (2008) Loss of neuroprotective survival signal in mice lacking insulin receptor gene in rod photoreceptor cells. J Biol Chem 283:19781–19792

    Article  PubMed  CAS  Google Scholar 

  • Rajala RV, McClellan ME, Ash JD, et al (2002) In vivo regulation of phosphoinositide 3-kinase in retina through light-induced tyrosine phosphorylation of the insulin receptor beta-subunit. J Biol Chem 277:43319–43326

    Article  PubMed  CAS  Google Scholar 

  • Rajala RV, Tanito M, Neel BG et al (2010) Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. J Biol Chem 285:8894–8904

    Article  PubMed  CAS  Google Scholar 

  • Rajala RV, Wiskur B, Tanito M (2009) Diabetes reduces autophosphorylation of retinal insulin receptor and increases protein-tyrosine phosphatase-1B activity. Invest Ophthalmol Vis Sci 50:1033–1040

    Article  PubMed  Google Scholar 

  • Reiter CE, Sandirasegarane L, Wolpert EB et al (2003) Characterization of insulin signaling in rat retina in vivo and ex vivo. Am J Physiol 285:E763-E774

    CAS  Google Scholar 

  • Reiter CE, Wu X, Sandirasegarane L (2006) Diabetes reduces basal retinal insulin receptor signaling: reversal with systemic and local insulin. Diabetes 55:1148–1156

    Article  PubMed  CAS  Google Scholar 

  • Salmeen A, Andersen JN, Myers MP et al (2000) Molecular basis for recognition and dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 6:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Salmeen A, Andersen JN, Myers MP, Tonks NK, Barford D (2001) Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. Mol Cell 6:1401–1412

    Article  PubMed  CAS  Google Scholar 

  • Samardzija M, Wenzel A, Aufenberg S, et al (2006) Differential role of Jak-STAT signaling in retinal degenerations. FASEB J 20:E1790–E1801

    Article  Google Scholar 

  • Song J, Wu L, Chen Z (2003) Axons guided by insulin receptor in Drosophila visual system. Science 300:502–505

    Article  PubMed  CAS  Google Scholar 

  • Stuible M and Tremblay ML (2010) In control at the ER: PTP1B and the down-regulation of RTKs by dephosphorylation and endocytosis. Trends Cell Biol 20: 672–679

    Google Scholar 

  • Tonks NK (2003) PTP1B:from the sidelines to the front lines! FEBS Lett 546:140–148

    Article  PubMed  CAS  Google Scholar 

  • Ueki Y, Le YZ, Chollangi S et al (2009) Preconditioning-induced protection of photoreceptors requires activation of the signal-transducing receptor gp130 in photoreceptors. Proc Natl Acad Sci USA 106:21389–21394

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Rajala RV, McGinnis JF et al (2004) Involvement of insulin/phosphoinositide 3-kinase/Akt signal pathway in 17 beta-estradiol-mediated neuroprotection. J Biol Chem 279:13086–13094

    Article  PubMed  CAS  Google Scholar 

  • Zhang S and Zhang ZY (2007) PTP1B as a drug target: recent developments in PTP1B inhibitor discovery. Drug Discov Today 12:373–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the NIH (EY016507-05; EY00871).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju V. S. Rajala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Basavarajappa, D.K., Gupta, V.K., Rajala, R.V.S. (2012). Protein Tyrosine Phosphatase 1B: A Novel Molecular Target for Retinal Degenerative Diseases. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_106

Download citation

Publish with us

Policies and ethics