NKT Cells of Cancer Patients and How Models Can Inform Therapeutic Plans

Part of the Cancer Drug Discovery and Development book series (CDD&D)


Multiple immune cells contribute to antitumor activity. Adaptive immune cells have specificity and amplified responses to repeated antigen, but require targeting to tumor to avoid excessive autoimmune effects. Innate elements can directly kill tumor cells, have specificity and even a form of memory, and can recruit adaptive responses, but have a finite spectrum of targeting ligands. Invariant natural killer T cells (iNKT) are a subset of innate-like CD1d-restricted T cells with roles in regulating immunity, including immune surveillance against certain pathogens and tumors. iNKT recognize lipid antigens presented by monomorphic MHC-like CD1d expressed by dendritic cells (DC) and other antigen presenting cells (APC) as well as many hemopoietic, prostate, and some other solid tissues and corresponding tumors. Studies of human cancer have revealed frequent and selective numerical and functional defects in iNKT, which correlate with progression, but are reversible in vitro (at least). iNKT can contribute to physiological antitumor responses in animal models. iNKT activation with αGalCer (as originally identified) and newer analogs promotes model tumor rejection and protection from metastasis. However, CD1d-restricted either (either “noninvariant” or iNKT) NKT can also suppress antitumor responses through regulatory cytokine(s). Defects of iNKT appear to be mediated by both intrinsic causes and by impaired stimulatory capacity of DC present in tumor microenvironment (TME). iNKT have great therapeutic potential. Although this potential has been limited to date, apparently by such iNKT defects, combinations such as αGalCer with IL-12 can reverse model defects. This review summarizes progress, pitfalls, and new opportunities to exploitation of NKT cells in cancer therapy.


iNKT Cell Prostate Tumor Cell Tramp Mouse Hemopoietic Stem Cell Transplantation CD1d Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arrenberg P, Halder R, Kumar V. Cross-regulation between distinct natural killer T cell subsets influences immune response to self and foreign antigens. J Cell Physiol. 2009 Feb;218(2):246–50. PMID: 18814145; PMCID: PMC2653050.Google Scholar
  2. Beldi G, Wu Y, Banz Y, Nowak M, Miller L, Enjyoji K, Yegutkin G, Candinas D, Exley MA, Robson S. (2008) NKT cell dysfunction in CD39/Entpd1 null mice protects against Con A hepatitis. Hepatol. 48; 841–845.PubMedCrossRefGoogle Scholar
  3. Bellone M, Ceccon M, Grioni M, Jachetti E, Calcinotto A, Napolitano A, Freschi M, Casorati G, Dellabona P. iNKT cells control mouse spontaneous carcinoma independently of tumor-specific cytotoxic T cells. PLoS One. 2010 Jan 13;5(1):e8646. PMID: 20072624; PMCID: PMC2800182.PubMedCrossRefGoogle Scholar
  4. Behar SM, Porcelli SA. CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol. 2007;314:215–50. PMID: 17593663PubMedCrossRefGoogle Scholar
  5. Balato A, Unutmaz D, Gaspari AA. Natural killer T cells: an unconventional T-cell subset with diverse effector and regulatory functions. J Invest Dermatol. 2009;129:1628–42. Epub Mar 5. PMID: 19262602.Google Scholar
  6. Bendelac A, Savage PB, Teyton L (2007) The biology of NKT cells. Annu Rev Immunol 25: 297–336.Google Scholar
  7. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: natural killer T cell defects and human disease. Nat Rev Immunol. 2011 Feb;11(2):131–42. PMID: 21267014PubMedCrossRefGoogle Scholar
  8. Berzofsky JA, Terabe M (2009) The contrasting roles of NKT cells in tumor immunity. Curr Mol Med. 2009 Aug;9(6):667–72. PMID: 19689293; PMCID: PMC2729783.Google Scholar
  9. Beziat V, Nguyen S, Exley M, Achour A, Simon T, Chevallier P, Sirvent A, Vigouroux S, Debre P, Rio B, Vieillard V; French Minicord Study Group. Shaping of iNKT cell repertoire after unrelated cord blood transplantation. Clin Immunol. 2010 Jun;135(3):364–73. Epub 2010 Feb 13. PMID: 20153980.Google Scholar
  10. Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im JS, Alves PM, Martinet O, Halkic N, Cerottini JC, Romero P, Porcelli SA, Macdonald HR, Speiser DE. Enrichment of human CD4+ V(alpha)24/Vbeta11 invariant NKT cells in intrahepatic malignant tumors. J Immunol. 2009 Apr 15;182(8):5140–51. PubMed PMID: 19342695.PubMedCrossRefGoogle Scholar
  11. Bleicher PA, Balk SP, Hagen SJ, Blumberg RS, Flotte TJ, et al. (1990) Expression of murine CD1 on gastrointestinal epithelium. Science 250: 679–682.PubMedCrossRefGoogle Scholar
  12. Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, Kronenberg M. (1998a). CD1d-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J Exp Med. 188, 1521–1528.PubMedCrossRefGoogle Scholar
  13. Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol. 2009 Jan;9(1):28–38. PMID: 19079136.PubMedCrossRefGoogle Scholar
  14. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, Pack M, Hutchinson A, Geller M, Liu N, Annable R, Shay J, Kirchhoff K, Nishi N, Ando Y, Hayashi K, Hassoun H, Steinman RM, and Dhodapkar MV (2005). Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med. 201, 1503–1517.PubMedCrossRefGoogle Scholar
  15. Chang DH, Deng H, Matthews P, Krasovsky J, Ragupathi G, Spisek R, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood. 2008 Aug 15;112(4):1308–16. Epub 2008 Jun 5. PMID: 18535199; PMCID: PMC2515141.Google Scholar
  16. Chang WS, Kim JY, Kim YJ, Kim YS, Lee JM, et al. (2008b) Cutting edge: Programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181: 6707–6710.Google Scholar
  17. Cohen NR, Garg S, Brenner MB. Antigen Presentation by CD1 Lipids, T Cells, and NKT Cells in Microbial Immunity. Adv Immunol. 2009;102:1–94. PMID: 19477319.PubMedCrossRefGoogle Scholar
  18. Crough T, Purdie DM, Okai M, Maksoud A, Nieda M, Nicol AJ. Modulation of human Valpha24(+)Vbeta11(+) NKT cells by age, malignancy and conventional anticancer therapies. Br J Cancer. 2004 Nov 29;91(11):1880–6. PMID: 15520823PubMedCrossRefGoogle Scholar
  19. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, Kuchroo VK, Strom TB, Robson Sc.(2007). Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 204:1257–1265.PubMedCrossRefGoogle Scholar
  20. de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM, Paganoni AM, Maccario R, Di Cesare-Merlone A, Zecca M, Locatelli F, Dellabona P, Casorati G. Invariant NKT Cell Reconstitution in Pediatric Leukemia Patients Given HLA-Haploidentical Stem Cell Transplantation Defines Distinct CD4+ and CD4- Subset Dynamics and Correlates with Remission State. J Immunol. 2011 Feb 25. [Epub] PMID: 21357532Google Scholar
  21. de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, Monno A, Nuti S, Colombo M, Callea F, Porcelli SA, Panina-Bordignon P, Abrignani S, Casorati G, Dellabona P. 2004 Production of pro-fibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol. 173:1417–1425.Google Scholar
  22. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, Dhodapkar KM, and Krasovsky J. (2003). A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J Exp Med. 197, 1667–1676.PubMedCrossRefGoogle Scholar
  23. Dhodapkar KM, Cirignano B, Chamian F, Zagzag D, Miller DC, Finlay JL, Steinman RM (2004) Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor lytic activity following dendritic cell-mediated expansion. Int J Cancer. 2004 May 10;109(6):893–9. PMID: 15027123PubMedCrossRefGoogle Scholar
  24. Dhodapkar MV, Richter J (2011) Harnessing natural killer T (NKT) cells in human myeloma: Progress and challenges. Clin Immunol. 2011 Jan 11. [Epub ahead of print] PMID: 21233022.Google Scholar
  25. Diana J, Lehuen A. NKT cells: friend or foe during viral infections? Eur J Immunol. 2009 Dec;39(12):3283–91. PMID: 19830742.PubMedCrossRefGoogle Scholar
  26. Durante-Mangoni, R. Wang, A. Shaulov, Q. He,. Nasser, N. Afdhal, MJ. Koziel, & M. Exley (2004) Hepatic CD1d Expression in Hepatitis C Virus Infection and Recognition by Resident Pro-inflammatory CD1d-reactive T cells. J Immunol.173; 2159–66.Google Scholar
  27. Exley M, Garcia J, Balk SP, Porcelli S. Requirements for CD1d recognition by human invariant Valpha24+ CD4-CD8- T cells. J Exp Med. 1997;186:109–120.PubMedCrossRefGoogle Scholar
  28. Exley M, Porcelli S, Furman M, Garcia J, Balk S. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V alpha 24 J alpha Q T cell receptor alpha chains. J Exp Med. 1998;188:867–876.PubMedCrossRefGoogle Scholar
  29. Exley M, Garcia J, Wilson SB, Spada F, Gerdes D, Tahir SM, Patton KT, Blumberg RS, Porcelli S, Chott A, Balk SP. CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology. 2000;100:37–47.PubMedCrossRefGoogle Scholar
  30. Exley MA, He Q, Cheng O, Wang RJ, Cheney CP, Balk SP, and Koziel MJ. (2002). Cutting edge: Compartmentalization of Th1-like noninvariant CD1d- reactive T cells in hepatitis C virus-infected liver. J Immunol. 168, 1519–1523.PubMedGoogle Scholar
  31. Exley M & M. Koziel To be or not to be: NKT cells in the liver. (2004) Hepatology; 40:1033–40.Google Scholar
  32. Exley MA, Hou R, Shaulov A, Tonti E, Dellabona P, Casorati G, Akbari O, Akman Ho, Greenfield Ea, Gumperz JE, Boyson JE, Balk SP, Wilson SB.(2008) Selective activation, expansion, and monitoring of human iNKT cells with a mAb specific for the TCR α-chain CDR3 loop Eur J Immunol. 20:1756– 1756. Google Scholar
  33. Exley M, Lynch L, Varghese B, Balk S. Developing Understanding of the Roles of ‘NKT’ cells in Cancer: Reversing Tumor-induced Defects, Clin Immunol. 2011 May 13. [Epub] PMID: 21646050.Google Scholar
  34. Fais F, Tenca C, Cimino G, Coletti V, Zanardi S, Bagnara D, Saverino D, Zarcone D, De Rossi G, Ciccone E, Grossi CE. CD1d expression on B-precursor acute lymphoblastic leukemia subsets with poor prognosis. Leukemia. 2005 Apr;19(4):551–6. PMID: 15744356.PubMedGoogle Scholar
  35. Faunce DE, Palmer JL, Paskowicz KK, Witte PL, Kovacs EJ. CD1d-restricted NKT cells contribute to the age-associated decline of T cell immunity. J Immunol 2005;175:3102–3109.PubMedGoogle Scholar
  36. Fujii S, Shimizu K, Klimek V, Geller MD, Nimer SD, Dhodapkar MV. Severe and selective deficiency of interferon-gamma-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol. 2003a Aug;122(4):617–22. PMID: 12899717.PubMedCrossRefGoogle Scholar
  37. Fujii S, Shimizu K, Smith C, Bonifaz L, and Steinman RM. 2003b. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp. Med. 198, 267–279.PubMedCrossRefGoogle Scholar
  38. Fujii S, Shimizu K, Hemmi H, Steinman RM. Innate Valpha14(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity. Immunol Rev. 2007 Dec;220:183–98. PMID: 17979847.PubMedCrossRefGoogle Scholar
  39. Gabrilovich D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 4, 941–952.PubMedCrossRefGoogle Scholar
  40. Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, Maione D, Volpini G, Finco O, Nuti S, Tavarini S, Dellabona P, Rappuoli R, Casorati G, Abrignani S. Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA. 2007 Mar 6;104(10):3984–9. Epub 2007 Feb 27. PMID: 17360464.Google Scholar
  41. Giaccone G, Punt CJ, Ando Y, Ruijter R, Nishi N, Peters M, von Blomberg BM, Scheper RJ, van der Vliet HJ, van den Eertwegh AJ, Roelvink M, Beijnen J, Zwierzina H, and Pinedo HM. (2002). A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin. Cancer Res. 8, 3702–3709.PubMedGoogle Scholar
  42. Gillessen S, Naumov YN, Nieuwenhuis EE, Exley MA, Lee FS, Mach N, Luster AD, Blumberg RS, Taniguchi M, Balk SP, Strominger JL, Dranoff G, and Wilson SB. (2003). CD1d-restricted T cells regulate dendritic cell function and antitumor immunity in a granulocyte-macrophage colony-stimulating factor-dependent fashion. Proc. Natl. Acad. Sci. USA 100, 8874–8879.PubMedCrossRefGoogle Scholar
  43. Godfrey DI. and Kronenberg M. (2004). Going both ways: immune regulation via CD1d-dependent NKT cells. J Clin Invest. 114, 1379–1388.PubMedGoogle Scholar
  44. Godfrey DI, McConville MJ, Pellicci DG. Chewing the fat on natural killer T cell development. J Exp Med. 2006 Oct 2;203(10):2229–32. Epub 2006 Sep 25. PMID: 17000869; PMCID: PMC2118098.Google Scholar
  45. Gumperz JE, Miyake S, Yamamura T, and Brenner MB. (2002). Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med. 195, 625–636.PubMedCrossRefGoogle Scholar
  46. Hafner M, Zawatzky R, Hirtreiter C, Buurman WA, Echtenacher B, Hehlgans T, Monnel DN. Antimetastatic effect of CpG DNA mediated by type I IFN. Cancer Res. 2001 Jul 15;61(14):5523–8. PMID: 11454702.PubMedGoogle Scholar
  47. Hayakawa Y, Takeda K, Yagita H, Van Kaer L, Saiki I, and Okumura K. (2001). Differential regulation of Th1 and Th2 functions of NKT cells by CD28 and CD40 costimulatory pathways. J Immunol. 166, 6012–6018.PubMedGoogle Scholar
  48. Hegde S, Fox L, Wang X, Gumperz JE. Autoreactive natural killer T cells:promoting immune protection and immune tolerance through varied interactions with myeloid antigen-presenting cells. Immunology. 2010 Aug;130(4):471–83. Epub 2010 May 11. PMID: 20465577; PMCID: PMC2913258.Google Scholar
  49. Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, and Cerundolo V. (2003). NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol. 171, 5140–5147.PubMedGoogle Scholar
  50. Ishikawa A, Motohashi S, Ishikawa E, Fuchida H, Higashino K, Otsuji M, Iizasa T, Nakayama T, Taniguchi M, and Fujisawa T. (2005). A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 11, 1910–1917.PubMedCrossRefGoogle Scholar
  51. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Sato H, Kondo E, Harada M, Koseki H, Nakayama T, Tanaka Y, Taniguchi M. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Valpha14 NKT cells. Proc Natl Acad Sci USA. 1998 May 12;95(10):5690–3.PMID: 9576945PubMedCrossRefGoogle Scholar
  52. Kawano T, Nakayama T, Kamada N, Kaneko Y, Harada M, Ogura N, Akutsu Y, Motohashi S, Iizasa T, Endo H, Fujisawa T, Shinkai H, Taniguchi M. Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells. Cancer Res. 1999 Oct 15;59(20):5102–5. PMID: 10537282PubMedGoogle Scholar
  53. Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O’Farrelly C, Doherty DG. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol. 2003 Aug 15;171(4):1775–1779.PubMedGoogle Scholar
  54. Kenna T, O’Brien M, Hogan AE, Exley MA, Porcelli SA, Hegarty JE, O’Farrelly C, Doherty DG. CD1 expression and CD1-restricted T cell activity in normal and tumour-bearing human liver. Cancer Immunol Immunother. 2007 Apr;56(4):563–72. Epub 2006 Aug 22. PMID: 16924493.Google Scholar
  55. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, and Nishimura T. (1999). The natural killer T (NKT) cell ligand alpha-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)- 12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med. 189, 1121–1128.PubMedCrossRefGoogle Scholar
  56. Kohrt HE, Turnbull BB, Heydari K, Shizuru JA, Laport GG, Miklos DB, Johnston LJ, Arai S, Weng WK, Hoppe RT, Lavori PW, Blume KG, Negrin RS, Strober S, Lowsky R. TLI and ATG conditioning with low risk of graft-versus-host disease retains antitumor reactions after allogeneic hematopoietic cell transplantation from related and unrelated donors. Blood. 2009 Jul 30;114(5):1099–109. Epub 2009 May 7. PMID: 19423725; PMCID: PMC2721787.Google Scholar
  57. Kohrt HE, Pillai AB, Lowsky R, Strober S. NKT cells, Treg, and their interactions in bone marrow transplantation. Eur J Immunol. 2010 Jul;40(7):1862–9. PMID: 20583031; PMCID: PMC2926162.Google Scholar
  58. Konishi J, Yamazaki K, Yokouchi H, Shinagawa N, Iwabuchi K, Nishimura M. The characteristics of human NKT cells in lung cancer--CD1d independent cytotoxicity against lung cancer cells by NKT cells and decreased human NKT cell response in lung cancer patients. Hum Immunol. 2004 Nov;65(11):1377–88. PMID: 15556688.PubMedCrossRefGoogle Scholar
  59. Kronenberg, M. (2005). Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol. 23, 877–900.PubMedCrossRefGoogle Scholar
  60. Kronenberg M, Kinjo Y (2009) Innate-like recognition of microbes by invariant natural killer T cells.  Curr Opin Immunol. Aug; 21(4):391–6. Epub 2009 Jul 29. PMID: 19646850Google Scholar
  61. Kuns RD, Morris ES, Macdonald KP, Markey KA, Morris HM, Raffelt NC, Banovic T, Don AL, Rowe V, Burman AC, Clouston AD, Farah C, Besra GS, Illarionov PA, Smyth MJ, Porcelli SA, Hill GR. Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after alpha-galactosylceramide administration. Blood. 2009 Jun 4;113(23):5999–6010. Epub 2009 Apr 15. PMID: 19369232; PMCID: PMC2700331.Google Scholar
  62. Lappas CM, YJ, Day MA, Marshall VH, Engelhard and J, Linden 2006. Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med. 203:2639–2648.PubMedCrossRefGoogle Scholar
  63. Lan F, Zeng D, Higuchi M, Higgins JP, Strober S. Host conditioning with total lymphoid irradiation and antithymocyte globulin prevents graft-versus-host disease: the role of CD1-reactive natural killer T cells. Biol Blood Marrow Transplant. 2003 Jun;9(6):355–63. PMID: 12813443.PubMedCrossRefGoogle Scholar
  64. Lang ML (2009) How do natural killer T cells help B cells? Expert Rev Vaccines. Aug;8(8):1109–21. PMID: 19627191; PMCID: PMC2747240.Google Scholar
  65. Lee PT, Benlagha K, Teyton L, and Bendelac A. (2002). Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med. 195, 637–641.PubMedCrossRefGoogle Scholar
  66. Lowsky R, Takahashi T, Liu YP, Dejbakhsh-Jones S, Grumet FC, Shizuru JA, Laport GG, Stockerl-Goldstein KE, Johnston LJ, Hoppe RT, Bloch DA, Blume KG, Negrin RS, Strober S. Protective conditioning for acute graft-versus-host disease. N Engl J Med. 2005 Sep 29;353(13):1321–31. PMID: 16192477.PubMedCrossRefGoogle Scholar
  67. Lynch L, O’Shea D, Winter DC, Geoghegan J, Doherty DG, O’Farrelly C. Invariant NKT cells and CD1d+ cells amass in human omentum and are depleted in patients with cancer and obesity. Eur J Immunol. 2009 Jul;39(7):1893–1901. PMID: 19585513.PubMedCrossRefGoogle Scholar
  68. Mandal M, Chen XR, Alegre ML, Chiu NM, Chen YH, et al. (1998) Tissue distribution, regulation and intracellular localization of murine CD1 molecules. Mol Immunol 35: 525–536.PubMedCrossRefGoogle Scholar
  69. Matsuda JL, Mallevaey T, Scott-Browne J, Gapin L (2008) CD1d-restricted iNKT cells, the “Swiss-Army knife” of the immune system. Curr Opin Immunol 20: 358–368.Google Scholar
  70. Matsuda JL, Gapin L, Baron JL, Sidobre S, Stetson DB, Mohrs M, Locksley RM, Kronenberg M. Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci. USA. 2003 Jul 8;100(14):8395–8400. Epub 2003 Jun 26. PubMed PMId: 12829795; PubMed Central PMCID: PMC166240.PubMedCrossRefGoogle Scholar
  71. Mehta AS, Gu B, Conyers B, Ouzounov S, Wang L, Moriarty RM, Dwek RA, Block TM. alpha-Galactosylceramide and novel synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses. Antimicrob Agents Chemother. 2004;48:2085–90. PMID: 15155204; PMCID: PMC415597.Google Scholar
  72. Metelitsa LS, OV, Naidenko A, Kant HW, Wu MJ, Loza, B, Perussia, et al, Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol. 2001;167:3114–3122.PubMedGoogle Scholar
  73. Metelitsa LS, Weinberg KI, Emanuel PD, Seeger RC. Expression of CD1d by myelomonocytic leukemias provides a target for cytotoxic NKT cells. Leukemia. 2003 Jun;17(6):1068–1077. PMID: 12764370.PubMedCrossRefGoogle Scholar
  74. Metelitsa LS, Wu HW, Wang H, Yang Y, Warsi Z, et al. (2004) Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J Exp Med 199:1213–1221.CrossRefGoogle Scholar
  75. Metelitsa LS, Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol 2011. [Epub ahead of print] PubMed PMID: 21095162.Google Scholar
  76. Molling JW, Kolgen W, van der Vliet HJ, Boomsma MF, Kruizenga H, Smorenburg CH, Molenkamp BG, Langendijk JA, Leemans CR, von Blomberg BM, Scheper RJ, and van den Eertwegh AJ. (2005). Peripheral blood IFN-gamma-secreting Valpha24  +  Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer. 116, 87–93.PubMedCrossRefGoogle Scholar
  77. Molling JW, Langius JA, Langendijk JA, Leemans CR, Bontkes HJ, van der Vliet HJ, von Blomberg BM, Scheper RJ, van den Eertwegh AJ. Low levels of circulating invariant natural killer T cells predict poor clinical outcome in patients with head and neck squamous cell carcinoma. J Clin Oncol. 2007 Mar 1;25(7):862–868. PMID: 17327607PubMedCrossRefGoogle Scholar
  78. Montoya CJ, Jie HB, Al-Harthi L, Mulder C, Patino PJ, Rugeles MT, Krieg AM, Landay AL, Wilson SB. Activation of plasmacytoid dendritic cells with TLR9 agonists initiates invariant NKT cell-mediated cross-talk with myeloid dendritic cells. J Immunol. 2006 Jul 15;177(2):1028–39. PMID: 16818759.PubMedGoogle Scholar
  79. Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL, Bofinger HM, Burman AC, Olver SD, Kienzle N, Porcelli SA, Pellicci DG, Godfrey DI, Smyth MJ, Hill GR. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest. 2005 Nov;115(11):3093–3103. Epub 2005 Oct 13. PMID: 16224535; PMCID: PMC1253626.Google Scholar
  80. Morris ES, MacDonald KP, Kuns RD, Morris HM, Banovic T, Don AL, Rowe V, Wilson YA, Raffelt NC, Engwerda CR, Burman AC, Markey KA, Godfrey DI, Smyth MJ, Hill GR. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation. Nat Med. 2009 Apr;15(4):436–441. Epub 2009 Mar 29. PMID: 19330008.Google Scholar
  81. Motohashi S, Kobayashi S, Ito T, Magara KK, Mikuni O, Kamada N, Iizasa T, Nakayama T, Fujisawa T, Taniguchi M. Preserved IFN-alpha (gamma) production of circulating Valpha24 NKT cells in primary lung cancer patients. Int J Cancer. 2002 Nov 10;102(2):159–165. Erratum in: Int J Cancer. 2003 May 10;104(6):799. PMID: 12385012.Google Scholar
  82. Motohashi S, Ishikawa A, Ishikawa E, Otsuji M, Iizasa T, Hanaoka H, Shimizu N, Horiguchi S, Okamoto Y, Fujii S, Taniguchi M, Fujisawa T, and Nakayama T, (2006). A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer. Clin. Cancer Res. 12, 6079–6086.PubMedCrossRefGoogle Scholar
  83. Motohashi S, Okamoto Y, Yoshino I, Nakayama T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin Immunol. 2011 Jan 27. [Epub ahead of print] PMID: 21349771.Google Scholar
  84. Nebozhyn M, Loboda A, Kari L, Rook AH, Vonderheid EC, Lessin S, Berger C, Edelson R, Nichols C, Yousef M, Gudipati L, Shang M, Showe MK, Showe LC. Quantitative PCR on 5 genes reliably identifies CTCL patients with 5% to 99% circulating tumor cells with 90% accuracy. Blood. 2006 Apr 15;107(8):3189–96. Epub 2006 Jan 10. PMID: 16403914Google Scholar
  85. Nicol A, Nieda M, Koezuka Y, Porcelli S, Suzuki K, Tadokoro K, Durrant S, Juji T. Human invariant valpha24+ natural killer T cells activated by alpha-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells. Immunology. 2000 Feb;99(2):229–234. PMID: 10692041; PMCID: PMC2327139.Google Scholar
  86. Nieda,M., Okai,M., Tazbirkova,A., Lin,H., Yamaura,A., Ide,K., Abraham,R., Juji,T., Macfarlane,D.J., and Nicol,A.J. (2004). Therapeutic activation of Valpha24  +  Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103, 383–389.PubMedCrossRefGoogle Scholar
  87. Nieuwenhuis EE, Gillessen S, Scheper RJ, Exley MA, Taniguchi M, Balk SP, Strominger JL, Dranoff G, Blumberg RS, & Wilson SB. (2005) CD1d and CD1d-restricted iNKT-cells play a pivotal role in contact hypersensitivity. Exp. Dermatol. 14:250–258.PubMedCrossRefGoogle Scholar
  88. Nowak M, Arredouani MS, Tun-Kyi A, Schmidt-Wolf I, Sanda MG, Balk SP, Exley MA. Defective NKT cell activation by CD1d  +  TRAMP prostate tumor cells is corrected by interleukin-12 with alpha-galactosylceramide. PLoS One. 2010a Jun 25;5(6):e11311. PMID: 20593019; PMCID: PMC2892484.Google Scholar
  89. Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk S, Exley MA. (2010b) The A2aR adenosine receptor controls cytokine production in iNKT cells. Eur. J. Immunol. 40:682–7. e-Pub. Dec. 28. PMID: 20039304.Google Scholar
  90. O’Konek JJ, Illarionov P, Khursigara DS, Ambrosino E, Izhak L, Castillo BF 2nd, Raju R, Khalili M, Kim HY, Howell AR, Besra GS, Porcelli SA, Berzofsky JA, Terabe M. Mouse and human iNKT cell agonist β-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest. 2011 Feb 1;121(2):683–94. doi:  10.1172/JCI42314. Epub 2011 Jan 18. PMID: 21245578CrossRefGoogle Scholar
  91. Padte NN, Li X, Tsuji M, Vasan S. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol. 2010 Dec 24. [Epub ahead of print] PMID: 21185784.Google Scholar
  92. Paget C, Mallevaey T, Speak AO, Torres D, Fontaine J, Sheehan KC, Capron M, Ryffel B, Faveeuw C, Leite de Moraes M, Platt F, Trottein F. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity. 2007 Oct;27(4):597–609. Epub 2007 Oct 18. PMID: 17950005Google Scholar
  93. Paget C, Bialecki E, Fontaine J, Vendeville C, Mallevaey T, Faveeuw C, Trottein F. Role of invariant NK T lymphocytes in immune responses to CpG oligodeoxynucleotides. J Immunol. 2009 Feb 15;182(4):1846–1853. PMID: 19201836.PubMedCrossRefGoogle Scholar
  94. Park JM, Terabe M, Donaldson DD, Forni G, Berzofsky JA. Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunol Immunother. 2008 Jun;57(6):907–912. Epub 2007 Nov 15. PMID: 18004566.Google Scholar
  95. Parekh VV, Wilson MT, Van Kaer L (2005) iNKT-cell responses to glycolipids. CritRevImmunol 25: 183–213.Google Scholar
  96. Parekh VV, Lalani S, Kim S, Halder R, Azuma M, et al. (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182: 2816–2826.CrossRefGoogle Scholar
  97. Pillai AB, George TI, Dutt S, Teo P, Strober S. Host NKT cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol. 2007 May 15;178(10):6242–6251. PMID: 17475852.PubMedGoogle Scholar
  98. Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)−/− mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro-and antifibrogenic genes. J Hepatol. 2005 Dec;43(6):1045–54. Epub 2005 Aug 15. PubMed PMID: 16223543.Google Scholar
  99. Reddy M, Wong J, Davis C, Prabhakar U (2005) Co-expression of IL-12 receptors along with CXCR3 and CD25 on activated peripheral blood T lymphocytes. CellImmunol 236: 123–130.PubMedCrossRefGoogle Scholar
  100. Reilly EC, Wands JR, Brossay L. Cytokine dependent and independent iNKT cell activation. Cytokine. 2010 Sep;51(3):227–231. PMID: 20554220; PMCID: PMC2914806.Google Scholar
  101. Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood. 2008;111:5637–5645. Epub 2008 Apr 16. PMID: 18417738; PMCID: PMC2424159.Google Scholar
  102. Roark JH, Park SH, Jayawardena J, Kavita U, Shannon M, et al. (1998) CD1.1 expression by mouse antigen-presenting cells and marginal zone B cells. JImmunol 160: 3121–3127.Google Scholar
  103. Saito TI, Li HW, Sykes M. Invariant NKT cells are required for antitumor responses induced by host-versus-graft responses. J Immunol. 2010 Aug 15;185(4):2099–2105. Epub 2010 Jul 14. PMID: 20631307.Google Scholar
  104. Salio M, Silk JD, Cerundolo V. Recent advances in processing and presentation of CD1 bound lipid antigens. Curr Opin Immunol. 2010 Feb;22(1):81–88. Epub 2010 Jan 14. PMID: 20080041.Google Scholar
  105. Schneiders FL, Scheper RJ, von Blomberg BM, Woltman AM, Janssen HL, van den Eertwegh AJ, Verheul HM, de Gruijl TD, van der Vliet HJ. Clinical experience with a-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol. 2010 Dec 17. [Epub ahead of print] PubMed PMID: 21169066.Google Scholar
  106. Sfondrini L, Besusso D, Zoia MT, Rodolfo M, Invernizzi AM, Taniguchi M, Nakayama T, Colombo MP, Monard S, Balsari A. Absence of the CD1 molecule up-regulates antitumor activity induced by CpG oligodeoxynucleotides in mice. J Immunol. 2002 Jul 1;169(1):151–158. PMID: 12077240.PubMedGoogle Scholar
  107. Swann JB, Coquet JM, Smyth MJ, Godfrey DI. CD1-restricted T cells and tumor immunity. Curr Top Microbiol Immunol. 2007;314:293–323. PMID: 17593666.PubMedCrossRefGoogle Scholar
  108. Taniguchi M, Tashiro T, Dashtsoodol N, Hongo N, Watarai H. The specialized iNKT cell system recognizes glycolipid antigens and bridges the innate and acquired immune systems with potential applications for cancer therapy. Int Immunol. 2010 Jan;22(1):1–6. Epub 2009 Oct 25. PMID: 19858073.Google Scholar
  109. Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, and Exley MA, (2001). Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J. Immunol. 167, 4046–4050.PubMedGoogle Scholar
  110. Teng MW, Yue S, Sharkey J, Exley MA, Smyth MJ. CD1d activation and blockade: a new antitumor strategy. J Immunol. (2009a);182:3366–3371. PMID: 19265113. PMCID: PMC2967458.PubMedGoogle Scholar
  111. Teng MW, Sharkey J, McLaughlin NM, Exley MA, Smyth MJ. CD1d-based combination therapy eradicates established tumors in mice. J Immunol. (2009b);183:1911–1920. PMID: 19620318. PMCID: PMC2967455.PubMedGoogle Scholar
  112. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, Chen W, Wahl SM, Ledbetter S, Pratt B, Letterio JJ, Paul WE, and Berzofsky JA, (2003). Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med. 198, 1741–1752.PubMedCrossRefGoogle Scholar
  113. Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, Hayakawa Y, Godfrey DI, Ostrand-Rosenberg S, Smyth MJ, and Berzofsky JA, (2005). A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med. 202, 1627–1633. PMID: 16365146; PMCID: PMC2212961.Google Scholar
  114. Terabe M, Khanna C, Bose S, Melchionda F, Mendoza A, Mackall CL, Helman LJ, Berzofsky JA. CD1d-restricted natural killer T cells can down-regulate tumor immunosurveillance independent of interleukin-4 receptor-signal transducer and activator of transcription 6 or transforming growth factor-beta. Cancer Res. 2006 Apr 1;66(7):3869–75. PMID: 16585215.PubMedCrossRefGoogle Scholar
  115. Tessmer MS, Fatima A, Paget C, Trottein F, Brossay L. NKT cell immune responses to viral infection. Expert Opin Ther Targets. 2009 Feb;13(2):153–162. PMID: 19236234; PMCID: PMC2921843.Google Scholar
  116. Tomura M, Yu WG, Ahn HJ, Yamashita M, Yang YF, Ono S, Hamaoka T, Kawano T, Taniguchi M, Koezuka Y, and Fujiwara H, (1999). A novel function of Valpha14  +  CD4  +  NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol. 163, 93–101.PubMedGoogle Scholar
  117. van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJ, Giaccone G, Scheper RJ, Pinedo HM. Circulating V(alpha24+) Vbeta11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol. 2001 Aug;100(2):144–148. PMID: 11465942PubMedCrossRefGoogle Scholar
  118. van der Vliet HJ, Molling JW, Nishi N, Masterson AJ, Kolgen W, Porcelli SA, van den Eertwegh AJ, von Blomberg BM, Pinedo HM, Giaccone G, Scheper RJ. Polarization of Valpha24+ Vbeta11+ natural killer T cells of healthy volunteers and cancer patients using alpha-galactosylceramide-loaded and environmentally instructed dendritic cells. Cancer Res. 2003 Jul 15;63(14):4101–4106. PMID: 12874013.PubMedGoogle Scholar
  119. van der Vliet, H.J., H.B. Koon, S.C. Yue, B. Uzunparmak, V. Seery, M.A. Gavin, A.Y. Rudensky, M.B. Atkins, S.P. Balk, & M.A. Exley. Effects of the administration of high-dose IL-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin. Cancer Res. 2007 Apr 1;13(7):2100–2108. PubMed PMID: 17404092.Google Scholar
  120. van der Vliet HJ, Wang R, Yue SC, Koon HB, Balk SP, Exley MA.Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J Immunol. 2008 Jun 1;180(11):7287–93. PMID: 18490728PubMedGoogle Scholar
  121. Venkataswamy MM, Porcelli SA (2010) Lipid and glycolipid antigens of CD1d-restricted natural killer T cells. Semin Immunol Apr;22(2):68–78. Epub 2009 Nov 27. PMID: 19945296; PMCID: PMC2837800.Google Scholar
  122. Wu DY, Segal NH, Sidobre S, Kronenberg M, Chapman PB. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J Exp Med. 2003 Jul 7;198(1):173–181. PMID: 12847141PubMedCrossRefGoogle Scholar
  123. Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, Shimizu N, Ueno N, Yamamoto S, Taniguchi M, Motohashi S, Nakayama T, Okamoto Y. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol. 2011 Mar;138(3):255–265. Epub 2010 Dec 24. PMID: 21185787.Google Scholar
  124. Yanagisawa K, Seino K, Ishikawa Y, Nozue M, Todoroki T, Fukao K. Impaired proliferative response of V alpha 24 NKT cells from cancer patients against alpha-galactosylceramide. J Immunol. 2002 Jun 15;168(12):6494–6499. PMID: 12055270.Google Scholar
  125. Yanagisawa K, Exley MA, Jiang X, Ohkochi N, Taniguchi M, Seino K. Hyporesponsiveness to natural killer T-cell ligand alpha-galactosylceramide in cancer-bearing state mediated by CD11b  +  Gr-1+ cells producing nitric oxide. Cancer Res. 2006 Dec 1;66(23):11441–6. PubMed PMID: 17145891. Sep;30(6):591–5. Review. PubMed PMID: 17667522.Google Scholar
  126. Yang W, Li H, Mayhew E, Mellon J, Chen PW, Niederkorn JY. NKT cell exacerbation of liver metastases arising from melanomas transplanted into either the eyes or spleens of mice. Invest Ophthalmol Vis Sci. 2011 Feb 17. Epub PMID: 21330669.Google Scholar
  127. Yue SC, Shaulov A, Wang R, Balk SP, and Exley MA, (2005). CD1d ligation on human monocytes directly signals rapid NF-kappaB activation and production of bioactive IL-12. Proc. Natl. Acad. Sci. USA 102, 11811–11816.PubMedCrossRefGoogle Scholar
  128. Zaini J, Andarini S, Tahara M, Saijo Y, Ishii N, Kawakami K, Taniguchi M, Sugamura K, Nukiwa T, Kikuchi T. OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest. 2007 Nov;117(11):3330–3338. PMID: 17975668PubMedCrossRefGoogle Scholar
  129. Zheng Z, Venkatapathy S, Rao G, Harrington CA. Expression profiling of B cell chronic lymphocytic leukemia suggests deficient CD1-mediated immunity, polarized cytokine response, altered adhesion and increased intracellular protein transport and processing of leukemic cells. Leukemia. 2002 Dec;16(12):2429–2437. PMID: 12454749.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Medicine, Division of Hematology/OncologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  2. 2.University of BonnBonnGermany

Personalised recommendations