Skip to main content

Mapping PVS by Molecular Imaging with Contrast Agents

  • Conference paper
  • First Online:
The Primo Vascular System
  • 755 Accesses

Abstract

The primo vascular system (PVS) is now verified for its existence in the animal body. Some of its anatomical information and its role for a few diseases were also revealed. One of the important future tasks for better understanding the PVS may be its distribution (map) inside the body. Most studies already performed on the PVS visualization are limited to the vessels on the surface of various organs, and inside the lymph/blood vessels. Thorough mapping of PVS will be valuable because it may reveal the mode of the communication among the organs connected via this system. In addition, the changes in map of the PVS system in the course of disease progression may provide us with important information that can be utilized for better health management. Because the diameters of small PVS vessels are only in the range of tens of micrometers, for existing biomedical imaging modalities to be effective for imaging the system, external agents generating very high contrast combined with highly PVS-specific targeting agent will be required. In this chapter, a futuristic design of a single contrast agent guided by highly PVS-specific targeting molecule for MRI, X-ray/CT, optical, and TEM imaging is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim BH (1963) On the Kyungrak system. J Acad Med Sci 10:1–41

    Google Scholar 

  2. Shin H, Johng H-M, Lee B-C, Cho S-I, Soh K-S, Baik K-Y, J-S YOO, Soh K-S (2005) Feulgen reaction study of novel threadlike structures (Bonghan ducts) on the surfaces of mammalian organs. Anat Rec B New Anat 284:35–40

    PubMed  Google Scholar 

  3. Sung B, Kim MS, Lee B-C, Yoo JS, Lee S-H, Kim Y-J, Kim K-W, Soh K-S (2007) Measurement of flow speed in the channels of novel threadlike structures on the surfaces of mammalian organs. Naturwissenschaften 95(2):117–124

    Article  PubMed  Google Scholar 

  4. Lee B-C, Kim S, Soh K-S (2008) Novel anatomic structures in the brain and spinal cord of rabbit that may belong to the Bonghan system of potential acupuncture meridians. J Acupunct Meridian Stud 1(1):29–35

    Article  PubMed  Google Scholar 

  5. Ogay V, Bae KH, Kim KW, Soh K-S (2009) Comparison of the characteristic features of Bonghan ducts, blood and lymphatic capillaries. J Acupunct Meridian Stud 2(2):107–117

    Article  PubMed  Google Scholar 

  6. Kwon J, Baik KY, Lee B-C, Soh K-S, Lee NJ, Kang CJ (2007) Scanning probe microscopy study of microcells from the organ surface Bonghan corpuscle. Appl Phys Lett 90:173903. doi:10.1063/1.2732183

    Article  Google Scholar 

  7. Lee B-C, Bae K-H, Gil-Ja Jhon G-J, Soh K-S (2009) Bonghan system as mesenchymal stem cell niches and pathways of macrophages in adipose tissues. J Acupunct Meridian Stud 2(1):79–82

    Article  PubMed  Google Scholar 

  8. Baik KY, Ogay V, Jeoung SC, Soh K-S (2009) Visualization of Bonghan microcells by electron and atomic force microscopy. J Acupunct Meridian Stud 2(2):124–129

    Article  PubMed  Google Scholar 

  9. Yoo JS, Kim HB, Ogay V, Lee B-C, Ahn S, Soh K-S (2009) Bonghan ducts as possible pathways for cancer metastasis. J Acupunct Meridian Stud 2(2):118–123

    Article  PubMed  Google Scholar 

  10. Yoo JS, Kim HB, Won N, Bang J, Kim S, Ahn S, Lee B-C, Soh K-S (2010) Evidence for an additional metastatic route: in vivo imaging of cancer cells in the primo-vascular system around tumors and organs. Mol Imaging Biol 13(3):471–480. doi:10.1007/s11307-010-0366-1

    Article  Google Scholar 

  11. Yoo JS, Ayati MH, Kim HB, Zhang W-B, Soh K-S (2010) Characterization of the primo-vascular system in the abdominal cavity of lung cancer mouse model and its differences from the lymphatic system. PLoS One 5(4):e9940

    Article  PubMed  Google Scholar 

  12. Lee C, Seol S-K, Lee B-C, Hing Y-K, Je J-H, Soh K-S (2006) Alcian blue staining method to visualize Bonghan threads inside large caliber lymphatic vessels and X-ray microtomography to reveal their microchannels. Lymphat Res Biol 4:181–189

    Article  PubMed  CAS  Google Scholar 

  13. Lee B-C, Soh K-S (2008) Contrast-enhancing optical method to observe a Bonghan duct floating inside a lymph vessel of a rabbit. Lymphology 41:178–185

    PubMed  CAS  Google Scholar 

  14. Cassidy PJ, Radda GK (2005) Molecular imaging perspectives. J R Soc Interface 2:133–144

    Article  PubMed  CAS  Google Scholar 

  15. Culver J, Akers W, Achilefu S (2008) Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 49:169–172

    Article  PubMed  Google Scholar 

  16. Vande Velde G, Baekelandt V, Dresselaers T, Himmelreich UQ (2009) Magnetic resonance imaging and spectroscopy methods for molecular imaging. J Nucl Med Mol Imaging 53(6):565–585

    CAS  Google Scholar 

  17. Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  PubMed  CAS  Google Scholar 

  18. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145–150

    Article  PubMed  CAS  Google Scholar 

  19. Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159–163

    Article  PubMed  CAS  Google Scholar 

  20. Kang KA, Hong B (2006) Biocompatible nano-metal particle fluorescence enhancers. Crit Rev Eukaryot Gene Expr 16:45–60

    PubMed  CAS  Google Scholar 

  21. Wang J, Nantz MH, Achilefu S, Kang KA (2010) FRET-like fluorophore-nanoparticle complex for highly specific cancer localization. Adv Exp Med Biol 662:407–414

    Article  PubMed  Google Scholar 

  22. Neeves AE, Birnboim MH (1989) Composite structures for the enhancement of nonlinear-optical susceptibility. J Opt Soc Am B 6:787–796

    Article  CAS  Google Scholar 

  23. Bharadwaj P, Anger P, Novotny L (2007) Nanoplasmonic enhancement of single-molecule fluorescence. Nanotechnology 18:044017

    Article  Google Scholar 

  24. Achilefu S, Dorshow R, Bugaj J, Rajagopalan R (2000) Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging. Invest Radiol 35:479–485

    Article  PubMed  CAS  Google Scholar 

  25. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  PubMed  CAS  Google Scholar 

  26. Xu C, Tung GA, Sun S (2008) Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater 20(13):4167–4169

    Article  PubMed  CAS  Google Scholar 

  27. Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596

    Article  PubMed  CAS  Google Scholar 

  28. Li J, Chaudhary A, Chmura SJ, Pelizzari C, Rajh T, Wietholt C, Kurtoglu M, Aydogan B (2010) A novel functional CT contrast agent for molecular imaging of cancer. Phys Med Biol 55(15):4389–4397

    Article  PubMed  Google Scholar 

  29. Weissleder R, Elizondo G, Wittenberg J, Babito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175:489

    PubMed  CAS  Google Scholar 

  30. Hoehn M, Wiedermann D, Justicia C, Ramos-Cabrer P, Kruttwig K, Farr T, Himmelreich U (2007) Cell tracking using magnetic resonance imaging. J Physiol 584(pt 1):25–30

    Article  PubMed  CAS  Google Scholar 

  31. Flint JJ, Lee CH, Hansen B, Fey M, Schmidig D, Bui JD, King MA, Vestergaard-Poulsen P, Blackband SJ (2009) Magnetic resonance microscopy of mammalian neurons. Neuroimage 46(4):1037–1040

    Article  PubMed  Google Scholar 

  32. Hilger I, Hergt R, Kaiser WA (2005) Use of magnetic nanoparticle heating in the treatment of breast cancer. IEE Proc Nanobiotechnol 152(1):33–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung A. Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kang, K.A. (2012). Mapping PVS by Molecular Imaging with Contrast Agents. In: Soh, KS., Kang, K., Harrison, D. (eds) The Primo Vascular System. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0601-3_32

Download citation

Publish with us

Policies and ethics