Skip to main content

Mouse Models of IGF-1R and Cancer

  • Chapter
  • First Online:
  • 724 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

A variety of systems have been used to evaluate the role of the insulin-like growth factor (IGF) axis in cancer, including human tissue and serum, cell lines derived from spontaneous tumors from humans and other species, and genetically modified animals. As animal models of the IGF ligands (IGF-I, IGF-II) and IGF-binding proteins have been described elsewhere in this book, this chapter focuses on animal models of altered Igf1r gene expression.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD: Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 1984, 37: 367–379.

    Google Scholar 

  • Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 1984, 38: 627–637.

    Google Scholar 

  • Maddison K, Clarke AR: New approaches for modelling cancer mechanisms in the mouse. J Pathol 2005, 205: 181–193.

    Google Scholar 

  • Siegel PM, Hardy WR, Muller WJ: Mammary gland neoplasia: insights from transgenic mouse models. Bioessays 2000, 22: 554–563.

    Google Scholar 

  • Frese KK, Tuveson DA: Maximizing mouse cancer models. Nat Rev Cancer 2007, 7: 645–658.

    Google Scholar 

  • Sauer B: Inducible gene targeting in mice using the Cre/lox system. Methods 1998, 14: 381–392.

    Google Scholar 

  • Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993, 75: 59–72.

    Google Scholar 

  • Ristevski S: Making better transgenic models: conditional, temporal, and spatial approaches. Mol Biotechnol 2005, 29: 153–163.

    Google Scholar 

  • Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK et al.: Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 2005, 65: 3781–3787.

    Google Scholar 

  • Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R et al.: Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 2007, 26: 1636–1644.

    Google Scholar 

  • Jones RA, Campbell CI, Petrik JJ, Moorehead RA: Characterization of a novel primary mammary tumor cell line reveals that cyclin D1 is regulated by the type I insulin-like growth factor receptor. Mol Cancer Res 2008, 6: 819–828.

    Google Scholar 

  • Jones RA, Campbell CI, Wood GA, Petrik JJ, Moorehead RA: Reversibility and recurrence of IGF-IR-induced mammary tumors. Oncogene 2009, 28: 2152–2162.

    Google Scholar 

  • Klinakis A, Szabolcs M, Chen G, Xuan S, Hibshoosh H, Efstratiadis A: Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci USA 2009, 106: 2359–2364.

    Google Scholar 

  • Robinson GW, McKnight RA, Smith GH, Hennighausen L: Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 1995, 121: 2079–2090.

    Google Scholar 

  • Surmacz E: Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia 2000, 5: 95–105.

    Google Scholar 

  • Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD et al.: Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2002, 2: 451–461.

    Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344: 783–792.

    Google Scholar 

  • Medina D, Smith GH: Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst 1999, 91: 967–969.

    Google Scholar 

  • Russo IH, Koszalka M, Russo J: Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer 1991, 64: 481–484.

    Google Scholar 

  • Sivaraman L, Stephens LC, Markaverich BM, Clark JA, Krnacik S, Conneely OM et al.: Hormone-induced refractoriness to mammary carcinogenesis in Wistar-Furth rats. Carcinogenesis 1998, 19: 1573–1581.

    Google Scholar 

  • Yang J, Yoshizawa K, Nandi S, Tsubura A: Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis 1999, 20: 623–628.

    Google Scholar 

  • Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I et al.: Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 2003, 160: 707–717.

    Google Scholar 

  • Reeve JG, Morgan J, Schwander J, Bleehen NM: Role for membrane and secreted insulin-like growth factor-binding protein-2 in the regulation of insulin-like growth factor action in lung tumors. Cancer Res 1993, 53: 4680–4685.

    Google Scholar 

  • Quinn KA, Treston AM, Unsworth EJ, Miller MJ, Vos M, Grimley C et al.: Insulin-like growth factor expression in human cancer cell lines. J Biol Chem 1996, 271: 11477–11483.

    Google Scholar 

  • Viktorsson K, De Petris L, Lewensohn R: The role of p53 in treatment responses of lung cancer. Biochem Biophys Res Commun 2005, 331: 868–880.

    Google Scholar 

  • Linnerth NM, Siwicky MD, Campbell CI, Watson KL, Petrik JJ, Whitsett JA et al.: Type I insulin-like growth factor receptor induces pulmonary tumorigenesis. Neoplasia 2009, 11: 672–682.

    Google Scholar 

  • Aggarwal S, Kim SW, Ryu SH, Chung WC, Koo JS: Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res 2008, 68: 981–988.

    Google Scholar 

  • Seo HS, Liu DD, Bekele BN, Kim MK, Pisters K, Lippman SM et al.: Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res 2008, 68: 6065–6073.

    Google Scholar 

  • Kwak MK, Lee HJ, Hur K, Park dJ, Lee HS, Kim WH et al.: Expression of Kruppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 2008, 134: 163–167.

    Google Scholar 

  • Nandan MO, McConnell BB, Ghaleb AM, Bialkowska AB, Sheng H, Shao J et al.: Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 2008, 134: 120–130.

    Google Scholar 

  • Wan H, Luo F, Wert SE, Zhang L, Xu Y, Ikegami M et al.: Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development 2008, 135: 2563–2572.

    Google Scholar 

  • Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP et al.: Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Kruppel-like factor 5. J Biol Chem 2007, 282: 15541–15549.

    Google Scholar 

  • Siwicky MD, Petrik JJ, Moorehead RA: The function of IGF-IR in NNK-mediated lung tumorigenesis. Lung Cancer 2011, 71: 11–18.

    Google Scholar 

  • Hanahan D: Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985, 315: 115–122.

    Google Scholar 

  • Christofori G, Naik P, Hanahan D: A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 1994, 369: 414–418.

    Google Scholar 

  • Lopez T, Hanahan D: Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 2002, 1: 339–353.

    Google Scholar 

  • Behrens J: Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev 1999, 18: 15–30.

    Google Scholar 

  • Mantzoros CS, Tzonou A, Signorello LB, Stampfer M, Trichopoulos D, Adami HO: Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. Br J Cancer 1997, 76: 1115–1118.

    Google Scholar 

  • Pollak M, Blouin MJ, Zhang JC, Kopchick JJ: Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br J Cancer 2001, 85: 428–430.

    Google Scholar 

  • Tricoli JV, Winter DL, Hanlon AL, Raysor SL, Watkins-Bruner D, Pinover WH et al.: Racial differences in insulin-like growth factor binding protein-3 in men at increased risk of prostate cancer. Urology 1999, 54: 178–182.

    Google Scholar 

  • Chen C, Lewis SK, Voigt L, Fitzpatrick A, Plymate SR, Weiss NS: Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer 2005, 103: 76–84.

    Google Scholar 

  • Cardillo MR, Monti S, Di Silverio F, Gentile V, Sciarra F, Toscano V: Insulin-like growth factor (IGF)-I, IGF-II and IGF type I receptor (IGFR-I) expression in prostatic cancer. Anticancer Res 2003, 23: 3825–3835.

    Google Scholar 

  • Liao Y, Abel U, Grobholz R, Hermani A, Trojan L, Angel P et al.: Up-regulation of insulin-like growth factor axis components in human primary prostate cancer correlates with tumor grade. Hum Pathol 2005, 36: 1186–1196.

    Google Scholar 

  • Ryan CJ, Haqq CM, Simko J, Nonaka DF, Chan JM, Weinberg V et al.: Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer. Urol Oncol 2007, 25: 134–140.

    Google Scholar 

  • Tennant MK, Thrasher JB, Twomey PA, Drivdahl RH, Birnbaum RS, Plymate SR: Protein and messenger ribonucleic acid (mRNA) for the type 1 insulin-like growth factor (IGF) receptor is decreased and IGF-II mRNA is increased in human prostate carcinoma compared to benign prostate epithelium. J Clin Endocrinol Metab 1996, 81: 3774–3782.

    Google Scholar 

  • Sutherland BW, Knoblaugh SE, Kaplan-Lefko PJ, Wang F, Holzenberger M, Greenberg NM: Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Res 2008, 68: 3495–3504.

    Google Scholar 

  • Holzenberger M, Leneuve P, Hamard G, Ducos B, Perin L, Binoux M et al.: A targeted partial invalidation of the insulin-like growth factor I receptor gene in mice causes a postnatal growth deficit. Endocrinology 2000, 141: 2557–2566.

    Google Scholar 

  • Jin C, McKeehan K, Guo W, Jauma S, Ittmann MM, Foster B et al.: Cooperation between ectopic FGFR1 and depression of FGFR2 in induction of prostatic intraepithelial neoplasia in the mouse prostate. Cancer Res 2003, 63: 8784–8790.

    Google Scholar 

  • Greenberg NM, Demayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al.: Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995, 92: 3439–3443.

    Google Scholar 

  • Chott A, Sun Z, Morganstern D, Pan J, Li T, Susani M et al.: Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor. Am J Pathol 1999, 155: 1271–1279.

    Google Scholar 

  • Plymate SR, Bae VL, Maddison L, Quinn LS, Ware JL: Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology 1997, 138: 1728–1735.

    Google Scholar 

  • Desbois-Mouthon C, Wendum D, Cadoret A, Rey C, Leneuve P, Blaise A et al.: Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J 2006, 20: 773–775.

    Google Scholar 

  • Cadoret A, Desbois-Mouthon C, Wendum D, Leneuve P, Perret C, Tronche F et al.: c-myc-induced hepatocarcinogenesis in the absence of IGF-I receptor. Int J Cancer 2005, 114: 668–672.

    Google Scholar 

  • Breuhahn K, Schirmacher P: Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 2008, 14: 1690–1698.

    Google Scholar 

  • Tanaka S, Arii S: Molecularly targeted therapy for hepatocellular carcinoma. Cancer Sci 2009, 100: 1–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger A. Moorehead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Campbell, C.I., Petrik, J.J., Moorehead, R.A. (2012). Mouse Models of IGF-1R and Cancer. In: LeRoith, D. (eds) Insulin-like Growth Factors and Cancer. Cancer Drug Discovery and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0598-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0598-6_9

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0597-9

  • Online ISBN: 978-1-4614-0598-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics