Mouse Models of IGF-1R and Cancer

  • Craig I. Campbell
  • James J. Petrik
  • Roger A. Moorehead
Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

A variety of systems have been used to evaluate the role of the insulin-like growth factor (IGF) axis in cancer, including human tissue and serum, cell lines derived from spontaneous tumors from humans and other species, and genetically modified animals. As animal models of the IGF ligands (IGF-I, IGF-II) and IGF-binding proteins have been described elsewhere in this book, this chapter focuses on animal models of altered Igf1r gene expression.

Keywords

Surfactant Estrogen Adenocarcinoma Recombination Adenoma 

References

  1. Brinster RL, Chen HY, Messing A, van Dyke T, Levine AJ, Palmiter RD: Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 1984, 37: 367–379.Google Scholar
  2. Stewart TA, Pattengale PK, Leder P: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 1984, 38: 627–637.Google Scholar
  3. Maddison K, Clarke AR: New approaches for modelling cancer mechanisms in the mouse. J Pathol 2005, 205: 181–193.Google Scholar
  4. Siegel PM, Hardy WR, Muller WJ: Mammary gland neoplasia: insights from transgenic mouse models. Bioessays 2000, 22: 554–563.Google Scholar
  5. Frese KK, Tuveson DA: Maximizing mouse cancer models. Nat Rev Cancer 2007, 7: 645–658.Google Scholar
  6. Sauer B: Inducible gene targeting in mice using the Cre/lox system. Methods 1998, 14: 381–392.Google Scholar
  7. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A: Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993, 75: 59–72.Google Scholar
  8. Ristevski S: Making better transgenic models: conditional, temporal, and spatial approaches. Mol Biotechnol 2005, 29: 153–163.Google Scholar
  9. Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK et al.: Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 2005, 65: 3781–3787.Google Scholar
  10. Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R et al.: Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 2007, 26: 1636–1644.Google Scholar
  11. Jones RA, Campbell CI, Petrik JJ, Moorehead RA: Characterization of a novel primary mammary tumor cell line reveals that cyclin D1 is regulated by the type I insulin-like growth factor receptor. Mol Cancer Res 2008, 6: 819–828.Google Scholar
  12. Jones RA, Campbell CI, Wood GA, Petrik JJ, Moorehead RA: Reversibility and recurrence of IGF-IR-induced mammary tumors. Oncogene 2009, 28: 2152–2162.Google Scholar
  13. Klinakis A, Szabolcs M, Chen G, Xuan S, Hibshoosh H, Efstratiadis A: Igf1r as a therapeutic target in a mouse model of basal-like breast cancer. Proc Natl Acad Sci USA 2009, 106: 2359–2364.Google Scholar
  14. Robinson GW, McKnight RA, Smith GH, Hennighausen L: Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development 1995, 121: 2079–2090.Google Scholar
  15. Surmacz E: Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia 2000, 5: 95–105.Google Scholar
  16. Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD et al.: Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2002, 2: 451–461.Google Scholar
  17. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al.: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001, 344: 783–792.Google Scholar
  18. Medina D, Smith GH: Chemical carcinogen-induced tumorigenesis in parous, involuted mouse mammary glands. J Natl Cancer Inst 1999, 91: 967–969.Google Scholar
  19. Russo IH, Koszalka M, Russo J: Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer 1991, 64: 481–484.Google Scholar
  20. Sivaraman L, Stephens LC, Markaverich BM, Clark JA, Krnacik S, Conneely OM et al.: Hormone-induced refractoriness to mammary carcinogenesis in Wistar-Furth rats. Carcinogenesis 1998, 19: 1573–1581.Google Scholar
  21. Yang J, Yoshizawa K, Nandi S, Tsubura A: Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis 1999, 20: 623–628.Google Scholar
  22. Land CE, Tokunaga M, Koyama K, Soda M, Preston DL, Nishimori I et al.: Incidence of female breast cancer among atomic bomb survivors, Hiroshima and Nagasaki, 1950–1990. Radiat Res 2003, 160: 707–717.Google Scholar
  23. Reeve JG, Morgan J, Schwander J, Bleehen NM: Role for membrane and secreted insulin-like growth factor-binding protein-2 in the regulation of insulin-like growth factor action in lung tumors. Cancer Res 1993, 53: 4680–4685.Google Scholar
  24. Quinn KA, Treston AM, Unsworth EJ, Miller MJ, Vos M, Grimley C et al.: Insulin-like growth factor expression in human cancer cell lines. J Biol Chem 1996, 271: 11477–11483.Google Scholar
  25. Viktorsson K, De Petris L, Lewensohn R: The role of p53 in treatment responses of lung cancer. Biochem Biophys Res Commun 2005, 331: 868–880.Google Scholar
  26. Linnerth NM, Siwicky MD, Campbell CI, Watson KL, Petrik JJ, Whitsett JA et al.: Type I insulin-like growth factor receptor induces pulmonary tumorigenesis. Neoplasia 2009, 11: 672–682.Google Scholar
  27. Aggarwal S, Kim SW, Ryu SH, Chung WC, Koo JS: Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res 2008, 68: 981–988.Google Scholar
  28. Seo HS, Liu DD, Bekele BN, Kim MK, Pisters K, Lippman SM et al.: Cyclic AMP response element-binding protein overexpression: a feature associated with negative prognosis in never smokers with non-small cell lung cancer. Cancer Res 2008, 68: 6065–6073.Google Scholar
  29. Kwak MK, Lee HJ, Hur K, Park dJ, Lee HS, Kim WH et al.: Expression of Kruppel-like factor 5 in human gastric carcinomas. J Cancer Res Clin Oncol 2008, 134: 163–167.Google Scholar
  30. Nandan MO, McConnell BB, Ghaleb AM, Bialkowska AB, Sheng H, Shao J et al.: Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 2008, 134: 120–130.Google Scholar
  31. Wan H, Luo F, Wert SE, Zhang L, Xu Y, Ikegami M et al.: Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development 2008, 135: 2563–2572.Google Scholar
  32. Zhang H, Bialkowska A, Rusovici R, Chanchevalap S, Shim H, Katz JP et al.: Lysophosphatidic acid facilitates proliferation of colon cancer cells via induction of Kruppel-like factor 5. J Biol Chem 2007, 282: 15541–15549.Google Scholar
  33. Siwicky MD, Petrik JJ, Moorehead RA: The function of IGF-IR in NNK-mediated lung tumorigenesis. Lung Cancer 2011, 71: 11–18.Google Scholar
  34. Hanahan D: Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985, 315: 115–122.Google Scholar
  35. Christofori G, Naik P, Hanahan D: A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 1994, 369: 414–418.Google Scholar
  36. Lopez T, Hanahan D: Elevated levels of IGF-1 receptor convey invasive and metastatic capability in a mouse model of pancreatic islet tumorigenesis. Cancer Cell 2002, 1: 339–353.Google Scholar
  37. Behrens J: Cadherins and catenins: role in signal transduction and tumor progression. Cancer Metastasis Rev 1999, 18: 15–30.Google Scholar
  38. Mantzoros CS, Tzonou A, Signorello LB, Stampfer M, Trichopoulos D, Adami HO: Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. Br J Cancer 1997, 76: 1115–1118.Google Scholar
  39. Pollak M, Blouin MJ, Zhang JC, Kopchick JJ: Reduced mammary gland carcinogenesis in transgenic mice expressing a growth hormone antagonist. Br J Cancer 2001, 85: 428–430.Google Scholar
  40. Tricoli JV, Winter DL, Hanlon AL, Raysor SL, Watkins-Bruner D, Pinover WH et al.: Racial differences in insulin-like growth factor binding protein-3 in men at increased risk of prostate cancer. Urology 1999, 54: 178–182.Google Scholar
  41. Chen C, Lewis SK, Voigt L, Fitzpatrick A, Plymate SR, Weiss NS: Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer 2005, 103: 76–84.Google Scholar
  42. Cardillo MR, Monti S, Di Silverio F, Gentile V, Sciarra F, Toscano V: Insulin-like growth factor (IGF)-I, IGF-II and IGF type I receptor (IGFR-I) expression in prostatic cancer. Anticancer Res 2003, 23: 3825–3835.Google Scholar
  43. Liao Y, Abel U, Grobholz R, Hermani A, Trojan L, Angel P et al.: Up-regulation of insulin-like growth factor axis components in human primary prostate cancer correlates with tumor grade. Hum Pathol 2005, 36: 1186–1196.Google Scholar
  44. Ryan CJ, Haqq CM, Simko J, Nonaka DF, Chan JM, Weinberg V et al.: Expression of insulin-like growth factor-1 receptor in local and metastatic prostate cancer. Urol Oncol 2007, 25: 134–140.Google Scholar
  45. Tennant MK, Thrasher JB, Twomey PA, Drivdahl RH, Birnbaum RS, Plymate SR: Protein and messenger ribonucleic acid (mRNA) for the type 1 insulin-like growth factor (IGF) receptor is decreased and IGF-II mRNA is increased in human prostate carcinoma compared to benign prostate epithelium. J Clin Endocrinol Metab 1996, 81: 3774–3782.Google Scholar
  46. Sutherland BW, Knoblaugh SE, Kaplan-Lefko PJ, Wang F, Holzenberger M, Greenberg NM: Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Res 2008, 68: 3495–3504.Google Scholar
  47. Holzenberger M, Leneuve P, Hamard G, Ducos B, Perin L, Binoux M et al.: A targeted partial invalidation of the insulin-like growth factor I receptor gene in mice causes a postnatal growth deficit. Endocrinology 2000, 141: 2557–2566.Google Scholar
  48. Jin C, McKeehan K, Guo W, Jauma S, Ittmann MM, Foster B et al.: Cooperation between ectopic FGFR1 and depression of FGFR2 in induction of prostatic intraepithelial neoplasia in the mouse prostate. Cancer Res 2003, 63: 8784–8790.Google Scholar
  49. Greenberg NM, Demayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO et al.: Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995, 92: 3439–3443.Google Scholar
  50. Chott A, Sun Z, Morganstern D, Pan J, Li T, Susani M et al.: Tyrosine kinases expressed in vivo by human prostate cancer bone marrow metastases and loss of the type 1 insulin-like growth factor receptor. Am J Pathol 1999, 155: 1271–1279.Google Scholar
  51. Plymate SR, Bae VL, Maddison L, Quinn LS, Ware JL: Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology 1997, 138: 1728–1735.Google Scholar
  52. Desbois-Mouthon C, Wendum D, Cadoret A, Rey C, Leneuve P, Blaise A et al.: Hepatocyte proliferation during liver regeneration is impaired in mice with liver-specific IGF-1R knockout. FASEB J 2006, 20: 773–775.Google Scholar
  53. Cadoret A, Desbois-Mouthon C, Wendum D, Leneuve P, Perret C, Tronche F et al.: c-myc-induced hepatocarcinogenesis in the absence of IGF-I receptor. Int J Cancer 2005, 114: 668–672.Google Scholar
  54. Breuhahn K, Schirmacher P: Reactivation of the insulin-like growth factor-II signaling pathway in human hepatocellular carcinoma. World J Gastroenterol 2008, 14: 1690–1698.Google Scholar
  55. Tanaka S, Arii S: Molecularly targeted therapy for hepatocellular carcinoma. Cancer Sci 2009, 100: 1–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Craig I. Campbell
    • 1
  • James J. Petrik
    • 1
  • Roger A. Moorehead
    • 1
  1. 1.Department of Biomedical Sciences, Ontario Veterinary CollegeUniversity of GuelphGuelphCanada

Personalised recommendations