Microtechnologies for Drug Delivery

  • Kristy M. Ainslie
  • Tejal A. Desai
Part of the Advances in Delivery Science and Technology book series (ADST)


Microfabrication techniques, originally developed in the microelectronics industry, can be engineered for in vivo drug delivery. Microfabrication uses a variety of techniques including photolithography and micromachining to create devices with features ranging from 0.1 to hundreds of microns with high aspect ratios and precise features. Microfabrication offers a device feature scale that is relevant to the tissues and cells to which they are applied, as well as offering ease of en masse fabrication, small device size, and facile incorporation of integrated circuit technology. Utilizing these methods, drug delivery applications have been developed for in vivo use through many delivery routes including intravenous, oral, and transdermal. Overall, microfabricated devices have had an impact over a broad range of therapies and tissues. This review addresses many of these devices and highlights their fabrication as well as discusses materials relevant to microfabrication techniques.


Polylactic Acid Delivery Route Drug Release Kinetic Microfabrication Technique Microfabrication Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Madou M (2002) Fundamentals of microfabrication: The science of miniaturization. CRC, New YorkGoogle Scholar
  2. 2.
    Vora KD, Peele AG, Shew BY, Harvey EC, Hayes JP (2007) Fabrication of support structures to prevent SU-8 stiction in high aspect ratio structures. Microsyst Technol Micro Nanosyst Inform Storage Process Syst 13:487–493Google Scholar
  3. 3.
    Lopez CA, Fleischman AJ, Roy S, Desai TA (2006) Evaluation of silicon nanoporous membranes and ECM-based micro environments on neurosecretory cells. Biomaterials 27:3075–3083PubMedCrossRefGoogle Scholar
  4. 4.
    Saha K, Pollock JF, Schaffer DV, Healy KE (2007) Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 11:381–387PubMedCrossRefGoogle Scholar
  5. 5.
    Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9PubMedCrossRefGoogle Scholar
  6. 6.
    Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934PubMedCrossRefGoogle Scholar
  7. 7.
    Desai TA, West T, Cohen M, Boiarski T, Rampersaud A (2004) Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev 56:1661–1673PubMedCrossRefGoogle Scholar
  8. 8.
    Martin F, Walczak R, Boiarski A, Cohen M, West T, Cosentino C, Shapiro J, Ferrari M (2005) Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. J Control Release 102:123–133PubMedCrossRefGoogle Scholar
  9. 9.
    Ainslie KM, Sharma G, Dyer MA, Grimes CA, Pishko MV (2005) Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires. Nano Lett 5:1852–1856PubMedCrossRefGoogle Scholar
  10. 10.
    Ogura E, Abatti PJ, Moriizumi T (1991) Measurement of human red blood cell deformability using a single micropore on a thin Si3N4 film. IEEE Trans Biomed Eng 38:721–726PubMedCrossRefGoogle Scholar
  11. 11.
    Gardner P (2006) Microfabricated nanochannel implantable drug delivery devices: trends, limitations and possibilities. Expert Opin Drug Deliv 3:479–487PubMedCrossRefGoogle Scholar
  12. 12.
    Leoni L, Desai TA (2004) Micromachined biocapsules for cell-based sensing and delivery. Adv Drug Deliv Rev 56:211–229PubMedCrossRefGoogle Scholar
  13. 13.
    Ainslie KM, Desai TA (2008) Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 8:1864–1878PubMedCrossRefGoogle Scholar
  14. 14.
    Receveur RAM, Lindemans FW, De Rooij NF (2007) Microsystem technologies for implantable applications. J Micromech Microeng 17:R50–R80CrossRefGoogle Scholar
  15. 15.
    Liu HA, Webster TJ (2007) Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials 28:354–369PubMedCrossRefGoogle Scholar
  16. 16.
    Nie SM, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288PubMedCrossRefGoogle Scholar
  17. 17.
    Polla DL, Erdman AG, Robbins WP, Markus DT, Diaz-Diaz J, Rizq R, Nam Y, Brickner HT, Wang A, Krulevitch P (2000) Microdevices in medicine. Annu Rev Biomed Eng 2:551–576PubMedCrossRefGoogle Scholar
  18. 18.
    Pope-Harman A, Cheng MMC, Robertson F, Sakamoto J, Ferrari M (2007) Biomedical nanotechnology for cancer. Med Clin North Am 91:899PubMedCrossRefGoogle Scholar
  19. 19.
    Voldman J, Gray ML, Schmidt MA (1999) Microfabrication in biology and medicine. Annu Rev Biomed Eng 1:401–425PubMedCrossRefGoogle Scholar
  20. 20.
    Loeb GE (1990) Cochlear prosthetics. Annu Rev Neurosci 13:357–371PubMedCrossRefGoogle Scholar
  21. 21.
    Maynard EM (2001) Visual prostheses. Annu Rev Biomed Eng 3:145–168PubMedCrossRefGoogle Scholar
  22. 22.
    Mcallister DV, Allen MG, Prausnitz MR (2000) Microfabricated microneedles for gene and drug delivery. Annu Rev Biomed Eng 2:289–313PubMedCrossRefGoogle Scholar
  23. 23.
    Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360PubMedCrossRefGoogle Scholar
  24. 24.
    Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical, foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29PubMedCrossRefGoogle Scholar
  25. 25.
    Rutten WLC (2002) Selective electrical interfaces with the nervous system. Annu Rev Biomed Eng 4:407–452PubMedCrossRefGoogle Scholar
  26. 26.
    Tao SL, Desai TA (2003) Microfabricated drug delivery systems: from particles to pores. Adv Drug Deliv Rev 55:315–328PubMedCrossRefGoogle Scholar
  27. 27.
    Tao SL, Desai TA (2005) Gastrointestinal patch systems for oral drug delivery. Drug Discov Today 10:909–915PubMedCrossRefGoogle Scholar
  28. 28.
    Weiland JD, Liu WT, Humayun MS (2005) Retinal prosthesis. Annu Rev Biomed Eng 7:361–401PubMedCrossRefGoogle Scholar
  29. 29.
    West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292PubMedCrossRefGoogle Scholar
  30. 30.
    Wilson BS, Lawson DT, Muller JM, Tyler RS, Kiefer J (2003) Cochlear implants: Some likely next steps. Annu Rev Biomed Eng 5:207–249PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrara LA, Fleischman AJ, Togawa D, Bauer TW, Benzel EC, Roy S (2003) An in vivo biocompatibility assessment of MEMS materials for spinal fusion monitoring. Biomed Microdevices 5:297–302CrossRefGoogle Scholar
  32. 32.
    Steeves CA, Young YL, Liu Z, Bapat A, Bhalerao K, Soboyejo ABO, Soboyejo WO (2007) Membrane thickness design of implantable bio-MEMS sensors for the in-situ monitoring of blood flow. J Mater Sci Mater Med 18:25–37PubMedCrossRefGoogle Scholar
  33. 33.
    Desai TA, Hansford D, Ferrari M (1999) Characterization of micromachined silicon membranes for immunoisolation and bioseparation applications. J Membr Sci 159:221–231CrossRefGoogle Scholar
  34. 34.
    Ma B, Liu S, Gan ZY, Liu GJ, Cai XX, Zhang HH, Yang ZG (2006) A PZT insulin pump integrated with a silicon microneedle array for transdermal drug delivery. Microfluidics Nanofluidics 2:417–423CrossRefGoogle Scholar
  35. 35.
    Santini JT Jr, Cima MJ, Langer R (1999) A controlled-release microchip. Nature 397:335–338PubMedCrossRefGoogle Scholar
  36. 36.
    Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, 3-dimensional neural interface – manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38:758–768PubMedCrossRefGoogle Scholar
  37. 37.
    Chow AY, Pardue MT, Chow VY, Peyman GA, Liang CP, Perlman JI, Peachey NS (2001) Implantation of silicon chip microphotodiode arrays into the cat subretinal space. IEEE Trans Neural Systems Rehabil Eng 9:86–95CrossRefGoogle Scholar
  38. 38.
    Santiesteban FMM, Swanson SD, Noll DC, Anderson DJ (2006) Magnetic resonance compatibility of multichannel silicon microelectrode systems for neural recording and stimulation: Design criteria, tests, and recommendations. IEEE Trans Biomed Eng 53:547–558CrossRefGoogle Scholar
  39. 39.
    Dario P, Carrozza MC, Benvenuto A, Menciassi A (2000) Micro-systems in biomedical applications. J Micromec Microeng 10:235–244CrossRefGoogle Scholar
  40. 40.
    Lavan DA, Mcguire T, Langer R (2003) Small-scale systems for in vivo drug delivery. Nat Biotechnol 21:1184–1191PubMedCrossRefGoogle Scholar
  41. 41.
    Menz W, Guber A (1994) Microstructure technologies and their potential in medical applications. Minimally Invasive Neurosurg 37:21–27CrossRefGoogle Scholar
  42. 42.
    Mokwa W (2007) Medical implants based on microsystems. Meas Sci Technol 18:R47–R57CrossRefGoogle Scholar
  43. 43.
    Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56:185–198PubMedCrossRefGoogle Scholar
  44. 44.
    Schurr MO (2007) Microsystems technology for medical applications. Minim Invasive Ther Allied Technol 16:75–75PubMedCrossRefGoogle Scholar
  45. 45.
    Staples M, Daniel K, Cima MJ, and Langer R (2006) Application of micro- and nano-electromechanical devices to drug delivery. Pharm Res 23:847–863Google Scholar
  46. 46.
    Wallrabe U, Ruther P, Schaller T, Schomburg WK (1998) Microsystems in medicine. Int J Artif Organs 21:137–146PubMedGoogle Scholar
  47. 47.
    Balarin A, Gamulin O, Ivanda A, Djerek V, Celan O, Music S, Ristic A, Furic K (2007) Structure and optical properties of porous silicon prepared on thin epitaxial silicon layer on silicon substrates. J Mol Struct 834:465–470CrossRefGoogle Scholar
  48. 48.
    Chambon E, Florentin E, Torchynska T, Gonzalez-Hernandez J, Vorobiev Y (2005) Optical properties of porous silicon surface. Microelectron J 36:514–517CrossRefGoogle Scholar
  49. 49.
    De Stefano L, Rotiroti L, Rendina I, Moretti L, Scognamiglio V, Rossi M, D’auria S (2006) Porous silicon-based optical microsensor for the detection of l-glutamine. Biosensors Bioelectronics 21:1664–1667PubMedCrossRefGoogle Scholar
  50. 50.
    Jelinek I, Chvojka T, Vrkoslav V, Jindrich J, Lorenc M, Niznansky D, Nemec I, Kral V, Dian J (2005) Nanostructured porous silicon – optical properties, surface modification and sensor applications. Chimia 59:222–225CrossRefGoogle Scholar
  51. 51.
    Lillis B, Jungk C, Iacopino D, Whelton A, Hurley E, Sheehan MM, Splinter A, Quinn A, Redmond G, Lane WA, Mathewson A, Berney H (2005) Microporous silicon and biosensor development: structural analysis, electrical characterisation and biocapacity evaluation. Biosensors Bioelectronics 21:282–292PubMedCrossRefGoogle Scholar
  52. 52.
    Natarajan B, Ramakrishnan V, Vasu V, Ramamurthy S (2006) Structural and photoluminescence properties of porous silicon: Effect of HF concentration. Surf Rev Lett 13:351–356CrossRefGoogle Scholar
  53. 53.
    Park IY, Li ZY, Li XM, Pisano AP, Williams RS (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection. Biosensors Bioelectronics 22:2065–2070PubMedCrossRefGoogle Scholar
  54. 54.
    Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J (2006) Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv Funct Mater 16:387–394CrossRefGoogle Scholar
  55. 55.
    Reddy RRK, Chadha A, Bhattacharya E (2001) Porous silicon based potentiometric triglyceride biosensor. Biosensors Bioelectronics 16:313–317PubMedCrossRefGoogle Scholar
  56. 56.
    Chen SQ, Zhu ZQ, Zhu JZ, Zhang JA, Shi YL, Ke Y, Wang WM, Wang XH, Feng XA, Luo LQ, Li S (2004) Hydroxyapatite coating on porous silicon substrate obtained by precipitation process. Appl Surf Sci 230:418–424CrossRefGoogle Scholar
  57. 57.
    Hing KA, Revell PA, Smith N, Buckland T (2006) Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials 27:5014–5026PubMedCrossRefGoogle Scholar
  58. 58.
    Weis RP, Montchamp JL, Coffer JL, Attiah DG, Desai TA (2002) Calcified nanostructured silicon wafer surfaces for biosensing: Effects of surface modification on bioactivity. Disease Markers 18:159–165PubMedGoogle Scholar
  59. 59.
    Wilk SJ, Petrossian L, Goryll A, Thorriton TJ, Goodnick SM, Tang JM, Eisenberg RS (2007) Integrated electrodes on a silicon based ion channel measurement platform. Biosensors Bioelectronics 23:183–190PubMedCrossRefGoogle Scholar
  60. 60.
    Edquist BT, White TB, Fulmer GR, Thornberry DR, and Porter LA (2006) Degradation of long-chain alkyl functionalized porous silicon in simulated acellular plasma. Abstr Papers Am Chem Soc. 231:292-CHEDGoogle Scholar
  61. 61.
    Fulmer GR, Thornberry DR, Rhodes SD, Porter LA (2005) Degradation of functionalized porous silicon in simulated body fluid. Abstr Papers Am Chem Soc 229:U514–U514Google Scholar
  62. 62.
    Thornberry DR, Fulmer GR, Rhodes SD, Porter LA (2005) Degradation of functionalized porous silicon in simulated blood, gastric, and intestinal fluids. Abstr Papers Am Chem Soc 229:U679–U679Google Scholar
  63. 63.
    White TB, Edquist BT, Fulmer GR, Thornberry DR, and Porter LA (2006) Degradation of short-chain alkyl functionalized porous silicon in simulated acellular plasma. Abstr Papers Am Chem Soci:231Google Scholar
  64. 64.
    Anderson JM, Defife K, Mcnally A, Collier T, Jenney C (1999) Monocyte, macrophage and foreign body giant cell interactions with molecularly engineered surfaces. J Mater Sci Mater Med 10:579–588PubMedCrossRefGoogle Scholar
  65. 65.
    Jenney CR, Defife KM, Colton E, and Anderson JM (1998) Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfaces in vitro. Student Research Award in the Master’s Degree Candidate Category, 24th Annual Meeting of the Society for Biomaterials, San Diego, CA, April 22–26, 1998. J Biomed Mater Res. 41:171–184Google Scholar
  66. 66.
    Ainslie KM, Tao SL, Popat KC, Desai TA (2008) In vitro Immunogenicity of Silicon Based Micro- and Nano-structured Surfaces. ACS Nano 2:1076–1084PubMedCrossRefGoogle Scholar
  67. 67.
    Coltro WK, Piccin E, Fracassi Da Silva JA, Lucio Do Lago C, Carrilho E (2007) A toner-mediated lithographic technology for rapid prototyping of glass microchannels. Lab Chip 7:931–934PubMedCrossRefGoogle Scholar
  68. 68.
    Nagarajan S, Bosworth JK, Ober CK, Russell TP, Watkins JJ (2008) Simple fabrication of micropatterned mesoporous silica films using photoacid generators in block copolymers. Chem Mater 20:604–606CrossRefGoogle Scholar
  69. 69.
    Thomas MV, Puleo DA, Al-Sabbagh M (2005) Bioactive glass three decades on. J Long Term Eff Med Implants 15:585–597PubMedGoogle Scholar
  70. 70.
    Bosetti M, Hench L, Cannas M (2002) Interaction of bioactive glasses with peritoneal macrophages and monocytes in vitro. J Biomed Mater Res 60:79–85PubMedCrossRefGoogle Scholar
  71. 71.
    Brodbeck WG, Nakayama Y, Matsuda T, Colton E, Ziats NP, Anderson JM (2002) Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro. Cytokine 18:311–319PubMedCrossRefGoogle Scholar
  72. 72.
    Yamawaki H, Iwai N (2006) Mechanisms underlying nano-sized air-pollution-mediated progression of atherosclerosis - Carbon black causes cytotoxic injury/inflammation and inhibits cell growth in vascular endothelial cells. Circulation J 70:129–140CrossRefGoogle Scholar
  73. 73.
    Ainslie KM, Tao SL, Popat KC, Daniels H, Hardev V, Grimes CA, and Desai TA (2009) In vitro inflammatory response of nanostructured titania, silicon oxide, and polycaprolactone. J Biomed Mater Res A 91:647–655Google Scholar
  74. 74.
    Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 56:1621–1633PubMedCrossRefGoogle Scholar
  75. 75.
    Thomsen P, Gretzer C (2001) Macrophage interactions with modified material surfaces. Curr Opin Solid State Mater Sci 5:163–176CrossRefGoogle Scholar
  76. 76.
    Chang S, Popowich Y, Greco RS, Haimovich B (2003) Neutrophil survival on biomaterials is determined by surface topography. J Vasc Surg 37:1082–1090PubMedCrossRefGoogle Scholar
  77. 77.
    Thapa A, Webster TJ, Haberstroh KM (2003) Polymers with nano-dimensional surface features enhance bladder smooth muscle cell adhesion. J Biomed Mater Res A 67:1374–1383PubMedCrossRefGoogle Scholar
  78. 78.
    Tang ZG, Black RA, Curran JM, Hunt JA, Rhodes NP, Williams DF (2004) Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films. Biomaterials 25:4741–8PubMedCrossRefGoogle Scholar
  79. 79.
    Serrano MC, Pagani R, Vallet-Regi M, Pena J, Ramila A, Izquierdo I, Portoles MT (2004) In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials 25:5603–11PubMedCrossRefGoogle Scholar
  80. 80.
    Serrano MC, Pagani R, Manzano M, Comas JV, Portoles MT (2006) Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films. Biomaterials 27:4706–14PubMedCrossRefGoogle Scholar
  81. 81.
    Macewan MR, Brodbeck WG, Matsuda T, Anderson JM (2005) Student Research Award in the Undergraduate Degree Candidate category, 30th Annual Meeting of the Society for Biomaterials, Memphis, Tennessee, April 27-30, 2005. Monocyte/lymphocyte interactions and the foreign body response: in vitro effects of biomaterial surface chemistry. J Biomed Mater Res A 74:285–93PubMedGoogle Scholar
  82. 82.
    Craighead HG, James CD, Turner AMP (2001) Chemical and topographical patterning for directed cell attachment. Curr Opin Solid State Mater Sci 5:177–184CrossRefGoogle Scholar
  83. 83.
    Gretzer C, Gisselfalt K, Liljensten E, Ryden L, Thomsen P (2003) Adhesion, apoptosis and cytokine release of human mononuclear cells cultured on degradable poly(urethane urea), polystyrene and titanium in vitro. Biomaterials 24:2843–52PubMedCrossRefGoogle Scholar
  84. 84.
    Panush RS (1981) Modulation of human lymphocyte responses by neutrophil-derived factors: effects of neutrophils and neutrophil-derived factos. J Clin Lab Immunol 5:113–120PubMedGoogle Scholar
  85. 85.
    Ryu W, Huang Z, Prinz FB, Goodman SB, Fasching R (2007) Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. J Control Release 124:98–105PubMedCrossRefGoogle Scholar
  86. 86.
    Ainslie K, Kraning C, Desai T (2008) Chemotherapeutic release from hydrogel filled micro-engineered particles for oral delivery. Lab Chip 7:1042–1047CrossRefGoogle Scholar
  87. 87.
    Ainslie KM, Lowe RD, Beaudette TT, Petty L, Bachelder EM, Desai TA (2009) Microfabricated devices for enhanced bioadhesive drug delivery: attachment to and small-molecule release through a cell monolayer under flow. Small 5:2857–2863PubMedCrossRefGoogle Scholar
  88. 88.
    Ainslie KM, Kraning CM, Desai TA (2008) Microfabrication of an asymmetric, multi-layered microdevice for controlled release of orally delivered therapeutics. Lab Chip 8:1042–1047PubMedCrossRefGoogle Scholar
  89. 89.
    Tao SL, Desai TA (2005) Microfabrication of multilayer, asymmetric, polymeric devices for drug delivery. Adv Mater 17:1625CrossRefGoogle Scholar
  90. 90.
    Tao SL, Desai TA (2005) Micromachined devices: The impact of controlled geometry from cell-targeting to bioavailability. J Controlled Release 109:127–138CrossRefGoogle Scholar
  91. 91.
    Desai TA, Chu WH, Tu JK, Beattie GM, Hayek A, Ferrari M (1998) Microfabricated immunoisolating biocapsules. Biotechnol Bioeng 57:118–120PubMedCrossRefGoogle Scholar
  92. 92.
    Rohatgi P, Langhals NB, Kipke DR, Patil PG (2009) In vivo performance of a microelectrode neural probe with integrated drug delivery. Neurosurg Focus 27:E8PubMedCrossRefGoogle Scholar
  93. 93.
    Nuxoll EE, Hillmyer MA, Wang R, Leighton C, Siegel RA (2009) Composite block polymer-microfabricated silicon nanoporous membrane. ACS Appl Mater Interfaces 1:888–893PubMedCrossRefGoogle Scholar
  94. 94.
    Siegel RA, Nuxoll EE, Hillmyer MA, Ziaie B (2009) Top-down and bottom-up fabrication techniques for hydrogel based sensing and hormone delivery microdevices. Conf Proc IEEE Eng Med Biol Soc 2009:232–235PubMedGoogle Scholar
  95. 95.
    Ryu WH, Vyakarnam M, Greco RS, Prinz FB, Fasching RJ (2007) Fabrication of multi-layered biodegradable drug delivery device based on micro-structuring of PLGA polymers. Biomed Microdevices 9:845–853PubMedCrossRefGoogle Scholar
  96. 96.
    Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, Desimone JM (2005) Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 127:10096–10100PubMedCrossRefGoogle Scholar
  97. 97.
    Tao SL, Lubeley MW, Desai TA (2003) Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery. J Controlled Release 88:215–228CrossRefGoogle Scholar
  98. 98.
    Tao SL, Lubeley MW, Desai TA (2003) Synthesis of cytoadhesive poly(methylmethacrylate) for applications in targeted drug delivery. J Biomed Mater Res Part A 67A:369–375CrossRefGoogle Scholar
  99. 99.
    Tao SL, Popat K, Desai TA (2006) Off-wafer fabrication and surface modification of asymmetric 3D SU-8 microparticles. Nat Protoc 1:3153–3158PubMedCrossRefGoogle Scholar
  100. 100.
    Ahmed A, Bonner C, Desai TA (2002) Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. J Controlled Release 81:291–306CrossRefGoogle Scholar
  101. 101.
    Leoni L, Desai TA (2001) Nanoporous biocapsules for the encapsulation of insulinoma cells: Biotransport and biocompatibility considerations. IEEE Trans Biomed Eng 48:1335–1341PubMedCrossRefGoogle Scholar
  102. 102.
    Leoni L, Attiah D, Desai TA (2002) Nanoporous platforms for cellular sensing and delivery. Sensors 2:111–120CrossRefGoogle Scholar
  103. 103.
    Leoni L, Boiarski A, Desai TA (2002) Characterization of nanoporous membranes for immunoisolation: Diffusion properties and tissue effects. Biomed Microdevices 4:131–139CrossRefGoogle Scholar
  104. 104.
    Lesinski GB, Sharma S, Varker KA, Sinha P, Ferrari M, Carson WE 3rd (2005) Release of biologically functional interferon-alpha from a nanochannel delivery system. Biomed Microdevices 7:71–79PubMedCrossRefGoogle Scholar
  105. 105.
    Park JH, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66PubMedCrossRefGoogle Scholar
  106. 106.
    Hallow DM, Mahajan AD, Prausnitz MR (2007) Ultrasonically targeted delivery into endothelial and smooth muscle cells in ex vivo arteries. J Control Release 118:285–293PubMedCrossRefGoogle Scholar
  107. 107.
    Henry S, Mcallister DV, Allen MG, Prausnitz MR (1999) Microfabricated microneedles: A novel approach to transdermal drug delivery. J Pharm Sci 88:948PubMedGoogle Scholar
  108. 108.
    Jiang J, Gill HS, Ghate D, Mccarey BE, Patel SR, Edelhauser HF, Prausnitz MR (2007) Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci 48:4038–4043PubMedCrossRefGoogle Scholar
  109. 109.
    Lee JW, Park JH, Prausnitz MR (2008) Dissolving microneedles for transdermal drug delivery. Biomaterials 29:2113–2124PubMedCrossRefGoogle Scholar
  110. 110.
    Mcallister DV, Wang PM, Davis SP, Park JH, Canatella PJ, Allen MG, Prausnitz MR (2003) Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proc Natl Acad Sci USA 100:13755–13760PubMedCrossRefGoogle Scholar
  111. 111.
    Grayson AC, Cima MJ, Langer R (2005) Size and temperature effects on poly(lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials 26:2137–2145PubMedCrossRefGoogle Scholar
  112. 112.
    Daniel KD, Kim GY, Vassiliou CC, Jalali-Yazdi F, Langer R, Cima MJ (2007) Multi-reservoir device for detecting a soluble cancer biomarker. Lab Chip 7:1288–1293PubMedCrossRefGoogle Scholar
  113. 113.
    Reed ML, Wu C, Kneller J, Watkins S, Vorp DA, Nadeem A, Weiss LE, Rebello K, Mescher M, Smith AJ, Rosenblum W, Feldman MD (1998) Micromechanical devices for intravascular drug delivery. J Pharm Sci 87:1387–1394PubMedCrossRefGoogle Scholar
  114. 114.
    Chen J, Wise KD, Hetke JF, Bledsoe SC Jr (1997) A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng 44:760–769PubMedCrossRefGoogle Scholar
  115. 115.
    Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175CrossRefGoogle Scholar
  116. 116.
    Gratton SE, Pohlhaus PD, Lee J, Guo J, Cho MJ, Desimone JM (2007) Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINTTM nanoparticles. Controlled Release Society, Long Beach, CAGoogle Scholar
  117. 117.
    Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MMC, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotechnol 3:151–157CrossRefGoogle Scholar
  118. 118.
    Eaimtrakarn S, Itoh Y, Kishimoto JI, Yoshikawa Y, Shibata N, Takada K (2001) Retention and transit of intestinal mucoadhesive films in rat small intestine. Int J Pharm 224:61–67PubMedCrossRefGoogle Scholar
  119. 119.
    Fahr A, Liu X (2007) Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 4:403–416PubMedCrossRefGoogle Scholar
  120. 120.
    Mustata G, Dinh SM (2006) Approaches to oral drug delivery for challenging molecules. Crit Rev Ther Drug Carrier Syst 23:111–135PubMedGoogle Scholar
  121. 121.
    Wang Y, Bachman M, Sims CE, Li GP, Allbritton NL (2006) Simple photografting method to chemically modify and micropattern the surface of SU-8 photoresist. Langmuir 22:2719–2725PubMedCrossRefGoogle Scholar
  122. 122.
    Desai TA (2002) Microfabrication technology for pancreatic cell encapsulation. Expert Opin Biol Ther 2:633–646PubMedCrossRefGoogle Scholar
  123. 123.
    Desai TA, Hansford DJ, Ferrari M (2000) Micromachined interfaces: new approaches in cell immunoisolation and biomolecular separation. Biomol Eng 17:23–36PubMedCrossRefGoogle Scholar
  124. 124.
    Desai TA, Hansford DJ, Leoni L, Essenpreis M, Ferrari M (2000) Nanoporous anti-fouling silicon membranes for biosensor applications. Biosensors Bioelectronics 15:453–462PubMedCrossRefGoogle Scholar
  125. 125.
    Siegel RA, Gu Y, Lei M, Baldi A, Nuxoll EE, Ziaie B (2010) Hard and soft micro- and nanofabrication: An integrated approach to hydrogel-based biosensing and drug delivery. J Control Release 141:303–313PubMedCrossRefGoogle Scholar
  126. 126.
    Tsai NC, Sue CY (2007) Review of MEMS-based drug delivery and dosing systems. Sens Actuat Phys 134:555–564CrossRefGoogle Scholar
  127. 127.
    La Flamme KE, Mor G, Gong D, La Tempa T, Fusaro VA, Grimes CA, Desai TA (2005) Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol Ther 7:684–694PubMedCrossRefGoogle Scholar
  128. 128.
    Popat KC, Eltgroth M, Latempa TJ, Grimes CA, Desai TA (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28:4880–4888PubMedCrossRefGoogle Scholar
  129. 129.
    Giudice EL, Campbell JD (2006) Needle-free vaccine delivery. Adv Drug Deliv Rev 58:68–89PubMedCrossRefGoogle Scholar
  130. 130.
    Mendelsohn A, and Desai T. Inorganic nanoporous membranes for immunoisolated cell-based drug delivery, Austin, TX, Landes Bioscience (still in press)Google Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  1. 1.Division of Pharmaceutics, College of PharmacyThe Ohio State UniversityColumbusUSA
  2. 2.Department of Bioengineering and Therapeutic SciencesUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of PhysiologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations