Skip to main content

Small Ribonucleoproteins in Ribosome Biogenesis

  • Chapter
  • First Online:
The Nucleolus

Part of the book series: Protein Reviews ((PRON,volume 15))

  • 1436 Accesses

Abstract

Small nucleolar RNPs (snoRNPs) are abundant macromolecular assemblies in the nucleolus of eukaryotic cells and are essential for the synthesis of functional ribosomes. Generally, they use their RNA components as guides to determine their site of function by means of base-pairing between guide RNA and substrate RNA. SnoRNPs have both enzymatic and non-enzymatic functions. As enzymes, they catalyze nucleotide modifications and endonucleolytic cleavages of RNA substrates. When they are not acting as enzymes, they can be scaffolds for the assembly of even larger macromolecules, for example, the SSU processome/90S preribosome, or play a role in RNA folding as chaperones. In this chapter, we review our current understanding of the function and structure of small RNPs in the nucleolus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aittaleb M, Rashid R, Chen Q, Palmer JR, Daniels CJ, Li H (2003) Structure and function of archaeal box C/D sRNP core proteins. Nat Struct Biol 10:256–263

    PubMed  CAS  Google Scholar 

  • Aspinall TV, Gordon JM, Bennett HJ, Karahalios P, Bukowski JP, Walker SC, Engelke DR, Avis JM (2007) Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a ­conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 35:6439–6450

    PubMed  CAS  Google Scholar 

  • Atzorn V, Fragapane P, Kiss T (2004) U17/snR30 is a ubiquitous snoRNA with two conserved sequence motifs essential for 18S rRNA production. Mol Cell Biol 24:1769–1778

    PubMed  CAS  Google Scholar 

  • Baker DL, Youssef OA, Chastkofsky MI, Dy DA, Terns RM, Terns MP (2005) RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP. Genes Dev 19:1238–1248

    PubMed  CAS  Google Scholar 

  • Balakin AG, Smith L, Fournier MJ (1996) The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell 86:823–834

    PubMed  CAS  Google Scholar 

  • Beltrame M, Tollervey D (1992) Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J 11:1531–1542

    PubMed  CAS  Google Scholar 

  • Beltrame M, Tollervey D (1995) Base pairing between U3 and the pre-ribosomal RNA is required for 18S rRNA synthesis. EMBO J 14:4350–4356

    PubMed  CAS  Google Scholar 

  • Bleichert F, Baserga SJ (2007) The long unwinding road of RNA helicases. Mol Cell 27:339–352

    PubMed  CAS  Google Scholar 

  • Bleichert F, Baserga SJ (2010a) Dissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function. Nucleic Acids Res 38:8295–8305

    PubMed  CAS  Google Scholar 

  • Bleichert F, Baserga SJ (2010b) Ribonucleoprotein multimers and their functions. Crit Rev Biochem Mol Biol 45:331–350

    PubMed  CAS  Google Scholar 

  • Bleichert F, Granneman S, Osheim YN, Beyer AL, Baserga SJ (2006) The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation. Proc Natl Acad Sci USA 103:9464–9469

    PubMed  CAS  Google Scholar 

  • Bleichert F, Gagnon KT, Brown BA II, Maxwell ES, Leschziner AE, Unger VM, Baserga SJ (2009) A dimeric structure for archaeal box C/D small ribonucleoproteins. Science 325:1384–1387

    PubMed  CAS  Google Scholar 

  • Bohnsack MT, Kos M, Tollervey D (2008) Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep 9:1230–1236

    PubMed  CAS  Google Scholar 

  • Borovjagin AV, Gerbi SA (2000) The spacing between functional Cis-elements of U3 snoRNA is critical for rRNA processing. J Mol Biol 300:57–74

    PubMed  CAS  Google Scholar 

  • Bortolin ML, Ganot P, Kiss T (1999) Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs. EMBO J 18:457–469

    PubMed  CAS  Google Scholar 

  • Cahill NM, Friend K, Speckmann W, Li ZH, Terns RM, Terns MP, Steitz JA (2002) Site-specific cross-linking analyses reveal an asymmetric protein distribution for a box C/D snoRNP. EMBO J 21:3816–3828

    PubMed  CAS  Google Scholar 

  • Cavaille J, Nicoloso M, Bachellerie JP (1996) Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides. Nature 383:732–735

    PubMed  CAS  Google Scholar 

  • Chamberlain JR, Pagan R, Kindelberger DW, Engelke DR (1996) An RNase P RNA subunit ­mutation affects ribosomal RNA processing. Nucleic Acids Res 24:3158–3166

    PubMed  CAS  Google Scholar 

  • Chang DD, Clayton DA (1987) A novel endoribonuclease cleaves at a priming site of mouse ­mitochondrial DNA replication. EMBO J 6:409–417

    PubMed  CAS  Google Scholar 

  • Chu S, Archer RH, Zengel JM, Lindahl L (1994) The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci USA 91:659–663

    PubMed  CAS  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA ­helicases. Gene 367:17–37

    PubMed  CAS  Google Scholar 

  • Cote CA, Greer CL, Peculis BA (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8:786–797

    PubMed  CAS  Google Scholar 

  • Coughlin DJ, Pleiss JA, Walker SC, Whitworth GB, Engelke DR (2008) Genome-wide search for yeast RNase P substrates reveals role in maturation of intron-encoded box C/D small nucleolar RNAs. Proc Natl Acad Sci USA 105:12218–12223

    PubMed  CAS  Google Scholar 

  • Decatur WA, Fournier MJ (2002) rRNA modifications and ribosome function. Trends Biochem Sci 27:344–351

    PubMed  CAS  Google Scholar 

  • Dennis PP, Omer A, Lowe T (2001) A guided tour: small RNA function in Archaea. Mol Microbiol 40:509–519

    PubMed  CAS  Google Scholar 

  • Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y et al (2002) A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970

    PubMed  CAS  Google Scholar 

  • Duan J, Li L, Lu J, Wang W, Ye K (2009) Structural mechanism of substrate RNA recruitment in H/ACA RNA-guided pseudouridine synthase. Mol Cell 34:427–439

    PubMed  CAS  Google Scholar 

  • Dutca LM, Gallagher JE, Baserga SJ (2011) The initial U3 snoRNA: pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Res 39:5164–5180

    PubMed  CAS  Google Scholar 

  • Fayet-Lebaron E, Atzorn V, Henry Y, Kiss T (2009) 18S rRNA processing requires base pairings of snR30 H/ACA snoRNA to eukaryote-specific 18S sequences. EMBO J 28:1260–1270

    PubMed  CAS  Google Scholar 

  • Forster AC, Altman S (1990) Similar cage-shaped structures for the RNA components of all ­ribonuclease P and ribonuclease MRP enzymes. Cell 62:407–409

    PubMed  CAS  Google Scholar 

  • Ganot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809

    PubMed  CAS  Google Scholar 

  • Gaspin C, Cavaille J, Erauso G, Bachellerie JP (2000) Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol 297:895–906

    PubMed  CAS  Google Scholar 

  • Gautier T, Berges T, Tollervey D, Hurt E (1997) Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol 17:7088–7098

    PubMed  CAS  Google Scholar 

  • Ghalei H, Hsiao HH, Urlaub H, Wahl MC, Watkins NJ (2010) A novel Nop5-sRNA interaction that is required for efficient archaeal box C/D sRNP formation. RNA 16:2341–2348

    PubMed  CAS  Google Scholar 

  • Gill T, Cai T, Aulds J, Wierzbicki S, Schmitt ME (2004) RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24:945–953

    PubMed  CAS  Google Scholar 

  • Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D et al (2002) 90S Pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10:105–115

    PubMed  CAS  Google Scholar 

  • Hamma T, Ferre-D’Amare AR (2010) The box H/ACA ribonucleoprotein complex: interplay of RNA and protein structures in post-transcriptional RNA modification. J Biol Chem 285:805–809

    PubMed  CAS  Google Scholar 

  • Henras AK, Capeyrou R, Henry Y, Caizergues-Ferrer M (2004) Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 10:1704–1712

    PubMed  CAS  Google Scholar 

  • Houser-Scott F, Xiao S, Millikin CE, Zengel JM, Lindahl L, Engelke DR (2002) Interactions among the protein and RNA subunits of Saccharomyces cerevisiae nuclear RNase P. Proc Natl Acad Sci USA 99:2684–2689

    PubMed  CAS  Google Scholar 

  • Huang GM, Jarmolowski A, Struck JC, Fournier MJ (1992) Accumulation of U14 small nuclear RNA in Saccharomyces cerevisiae requires box C, box D, and a 5′, 3′ terminal stem. Mol Cell Biol 12:4456–4463

    PubMed  CAS  Google Scholar 

  • Hughes JM (1996) Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J Mol Biol 259:645–654

    PubMed  CAS  Google Scholar 

  • Ishitani R, Yokoyama S, Nureki O (2008) Structure, dynamics, and function of RNA modification enzymes. Curr Opin Struct Biol 18:330–339

    PubMed  CAS  Google Scholar 

  • Jacobson MR, Cao LG, Taneja K, Singer RH, Wang YL, Pederson T (1997) Nuclear domains of the RNA subunit of RNase P. J Cell Sci 110(pt 7):829–837

    PubMed  CAS  Google Scholar 

  • King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425–435

    PubMed  CAS  Google Scholar 

  • Kiss T, Filipowicz W (1992) Evidence against a mitochondrial location of the 7-2/MRP RNA in mammalian cells. Cell 70:11–16

    PubMed  CAS  Google Scholar 

  • Kiss T, Fayet-Lebaron E, Jady BE (2010) Box H/ACA small ribonucleoproteins. Mol Cell 37:597–606

    PubMed  Google Scholar 

  • Kiss-Laszlo Z, Henry Y, Bachellerie JP, Caizergues-Ferrer M, Kiss T (1996) Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85:1077–1088

    PubMed  CAS  Google Scholar 

  • Kiss-Laszlo Z, Henry Y, Kiss T (1998) Sequence and structural elements of methylation guide snoRNAs essential for site-specific ribose methylation of pre-rRNA. EMBO J 17:797–807

    PubMed  CAS  Google Scholar 

  • Kos M, Tollervey D (2005) The putative RNA helicase Dbp4p is required for release of the U14 snoRNA from preribosomes in Saccharomyces cerevisiae. Mol Cell 20:53–64

    PubMed  CAS  Google Scholar 

  • Kuhn JF, Tran EJ, Maxwell ES (2002) Archaeal ribosomal protein L7 is a functional homolog of the eukaryotic 15.5kD/Snu13p snoRNP core protein. Nucleic Acids Res 30:931–941

    PubMed  CAS  Google Scholar 

  • Lafontaine DL, Tollervey D (1999) Nop58p is a common component of the box C  +  D snoRNPs that is required for snoRNA stability. RNA 5:455–467

    PubMed  CAS  Google Scholar 

  • Lafontaine DL, Bousquet-Antonelli C, Henry Y, Caizergues-Ferrer M, Tollervey D (1998) The box H  +  ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev 12:527–537

    PubMed  CAS  Google Scholar 

  • Lee B, Matera AG, Ward DC, Craft J (1996) Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA 93:11471–11476

    PubMed  CAS  Google Scholar 

  • Li L, Ye K (2006) Crystal structure of an H/ACA box ribonucleoprotein particle. Nature 443:302–307

    PubMed  CAS  Google Scholar 

  • Li HD, Zagorski J, Fournier MJ (1990) Depletion of U14 small nuclear RNA (snR128) disrupts production of 18S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 10:1145–1152

    PubMed  CAS  Google Scholar 

  • Liang XH, Fournier MJ (2006) The helicase Has1p is required for snoRNA release from pre-rRNA. Mol Cell Biol 26:7437–7450

    PubMed  CAS  Google Scholar 

  • Liang B, Xue S, Terns RM, Terns MP, Li H (2007a) Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat Struct Mol Biol 14:1189–1195

    PubMed  CAS  Google Scholar 

  • Liang XH, Liu Q, Fournier MJ (2007b) rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Mol Cell 28:965–977

    PubMed  CAS  Google Scholar 

  • Liang B, Zhou J, Kahen E, Terns RM, Terns MP, Li H (2009a) Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA. Nat Struct Mol Biol 16:740–746

    PubMed  CAS  Google Scholar 

  • Liang XH, Liu Q, Fournier MJ (2009b) Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA 15:1716–1728

    PubMed  CAS  Google Scholar 

  • Lin J, Lai S, Jia R, Xu A, Zhang L, Lu J, Ye K (2011) Structural basis for site-specific ribose methylation by box C/D RNA protein complexes. Nature 469:559–563

    PubMed  CAS  Google Scholar 

  • Liu B, Liang XH, Piekna-Przybylska D, Liu Q, Fournier MJ (2008) Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol 5:249–254

    PubMed  CAS  Google Scholar 

  • Lygerou Z, Allmang C, Tollervey D, Seraphin B (1996) Accurate processing of a eukaryotic ­precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270

    PubMed  CAS  Google Scholar 

  • Maden BE (1990) The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 39:241–303

    PubMed  CAS  Google Scholar 

  • Maden BE, Hughes JM (1997) Eukaryotic ribosomal RNA: the recent excitement in the nucleotide modification problem. Chromosoma 105:391–400

    PubMed  CAS  Google Scholar 

  • Mattijssen S, Hinson ER, Onnekink C, Hermanns P, Zabel B, Cresswell P, Pruijn GJ (2011) Viperin mRNA is a novel target for the human RNase MRP/RNase P endoribonuclease. Cell Mol Life Sci 68:2469–2480

    Google Scholar 

  • Moore T, Zhang Y, Fenley MO, Li H (2004) Molecular basis of box C/D RNA-protein interactions; cocrystal structure of archaeal L7Ae and a box C/D RNA. Structure 12:807–818

    PubMed  CAS  Google Scholar 

  • Morrissey JP, Tollervey D (1993) Yeast snR30 is a small nucleolar RNA required for 18S rRNA synthesis. Mol Cell Biol 13:2469–2477

    PubMed  CAS  Google Scholar 

  • Ni J, Tien AL, Fournier MJ (1997) Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 89:565–573

    PubMed  CAS  Google Scholar 

  • Nolivos S, Carpousis AJ, Clouet-d’Orval B (2005) The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn. Nucleic Acids Res 33:6507–6514

    PubMed  CAS  Google Scholar 

  • Omer AD, Lowe TM, Russell AG, Ebhardt H, Eddy SR, Dennis PP (2000) Homologs of small nucleolar RNAs in Archaea. Science 288:517–522

    PubMed  CAS  Google Scholar 

  • Oruganti S, Zhang Y, Li H, Robinson H, Terns MP, Terns RM, Yang W (2007) Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs. J Mol Biol 371:1141–1150

    PubMed  CAS  Google Scholar 

  • Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ, Beyer AL (2004) Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol Cell 16:943–954

    PubMed  CAS  Google Scholar 

  • Peculis BA (1997) The sequence of the 5′ end of the U8 small nucleolar RNA is critical for 5.8S and 28S rRNA maturation. Mol Cell Biol 17:3702–3713

    PubMed  CAS  Google Scholar 

  • Peculis BA, Steitz JA (1993) Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73:1233–1245

    PubMed  CAS  Google Scholar 

  • Pham XH, Farge G, Shi Y, Gaspari M, Gustafsson CM, Falkenberg M (2006) Conserved sequence box II directs transcription termination and primer formation in mitochondria. J Biol Chem 281:24647–24652

    PubMed  CAS  Google Scholar 

  • Pluk H, van Eenennaam H, Rutjes SA, Pruijn GJ, van Venrooij WJ (1999) RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. RNA 5:512–524

    PubMed  CAS  Google Scholar 

  • Qu G, van Nues RW, Watkins NJ, Maxwell ES (2011) The spatial-functional coupling of box C/D and C′/D′ RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex. Mol Cell Biol 31:365–374

    PubMed  CAS  Google Scholar 

  • Reichow SL, Hamma T, Ferre-D’Amare AR, Varani G (2007) The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res 35:1452–1464

    PubMed  CAS  Google Scholar 

  • Reiter NJ, Osterman A, Torres-Larios A, Swinger KK, Pan T, Mondragon A (2010) Structure of a bacterial ribonuclease P holoenzyme in complex with tRNA. Nature 468:784–789

    PubMed  CAS  Google Scholar 

  • Rosenblad MA, Lopez MD, Piccinelli P, Samuelsson T (2006) Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 34:5145–5156

    PubMed  CAS  Google Scholar 

  • Rozhdestvensky TS, Tang TH, Tchirkova IV, Brosius J, Bachellerie JP, Huttenhofer A (2003) Binding of L7Ae protein to the K-turn of archaeal snoRNAs: a shared RNA binding motif for C/D and H/ACA box snoRNAs in Archaea. Nucleic Acids Res 31:869–877

    PubMed  CAS  Google Scholar 

  • Samarsky DA, Fournier MJ (1999) A comprehensive database for the small nucleolar RNAs from Saccharomyces cerevisiae. Nucleic Acids Res 27:161–164

    PubMed  CAS  Google Scholar 

  • Schmitt ME, Clayton DA (1993) Nuclear RNase MRP is required for correct processing of ­pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 13:7935–7941

    PubMed  CAS  Google Scholar 

  • Sharma K, Tollervey D (1999) Base pairing between U3 small nucleolar RNA and the 5′ end of 18S rRNA is required for pre-rRNA processing. Mol Cell Biol 19:6012–6019

    PubMed  CAS  Google Scholar 

  • Srivastava L, Lapik YR, Wang M, Pestov DG (2010) Mammalian DEAD box protein Ddx51 acts in 3′ end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 30:2947–2956

    PubMed  CAS  Google Scholar 

  • Steitz JA, Tycowski KT (1995) Small RNA chaperones for ribosome biogenesis. Science 270:1626–1627

    PubMed  CAS  Google Scholar 

  • Szewczak LB, DeGregorio SJ, Strobel SA, Steitz JA (2002) Exclusive interaction of the 15.5 kD protein with the terminal box C/D motif of a methylation guide snoRNP. Chem Biol 9:1095–1107

    PubMed  CAS  Google Scholar 

  • Szewczak LB, Gabrielsen JS, Degregorio SJ, Strobel SA, Steitz JA (2005) Molecular basis for RNA kink-turn recognition by the h15.5K small RNP protein. RNA 11:1407–1419

    PubMed  CAS  Google Scholar 

  • Tollervey D (1987) A yeast small nuclear RNA is required for normal processing of pre-ribosomal RNA. EMBO J 6:4169–4175

    PubMed  CAS  Google Scholar 

  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457

    PubMed  CAS  Google Scholar 

  • Tran E, Zhang X, Lackey L, Maxwell ES (2005) Conserved spacing between the box C/D and C′/D′ RNPs of the archaeal box C/D sRNP complex is required for efficient 2′-O-methylation of target RNAs. RNA 11:285–293

    PubMed  CAS  Google Scholar 

  • Tyc K, Steitz JA (1992) A new interaction between the mouse 5′ external transcribed spacer of pre-rRNA and U3 snRNA detected by psoralen crosslinking. Nucleic Acids Res 20:5375–5382

    PubMed  CAS  Google Scholar 

  • Tycowski KT, Shu MD, Steitz JA (1994) Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266:1558–1561

    PubMed  CAS  Google Scholar 

  • Tycowski KT, Smith CM, Shu MD, Steitz JA (1996) A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. Proc Natl Acad Sci USA 93:14480–14485

    PubMed  CAS  Google Scholar 

  • Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23:1857–1867

    PubMed  CAS  Google Scholar 

  • Wang H, Boisvert D, Kim KK, Kim R, Kim SH (2000) Crystal structure of a fibrillarin homologue from Methanococcus jannaschii, a hyperthermophile, at 1.6 A resolution. EMBO J 19:317–323

    PubMed  CAS  Google Scholar 

  • Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Luhrmann R (1998) Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4:1549–1568

    PubMed  CAS  Google Scholar 

  • Watkins NJ, Segault V, Charpentier B, Nottrott S, Fabrizio P, Bachi A, Wilm M, Rosbash M, Branlant C, Luhrmann R (2000) A common core RNP structure shared between the small nucleoar box C/D RNPs and the spliceosomal U4 snRNP. Cell 103:457–466

    PubMed  CAS  Google Scholar 

  • Watkins NJ, Dickmanns A, Luhrmann R (2002) Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP. Mol Cell Biol 22:8342–8352

    PubMed  CAS  Google Scholar 

  • Welting TJ, van Venrooij WJ, Pruijn GJ (2004) Mutual interactions between subunits of the human RNase MRP ribonucleoprotein complex. Nucleic Acids Res 32:2138–2146

    PubMed  CAS  Google Scholar 

  • Welting TJ, Kikkert BJ, van Venrooij WJ, Pruijn GJ (2006) Differential association of protein subunits with the human RNase MRP and RNase P complexes. RNA 12:1373–1382

    PubMed  CAS  Google Scholar 

  • Xue S, Wang R, Yang F, Terns RM, Terns MP, Zhang X, Maxwell ES, Li H (2010) Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle. Mol Cell 39:939–949

    PubMed  CAS  Google Scholar 

  • Ye K, Jia R, Lin J, Ju M, Peng J, Xu A, Zhang L (2009) Structural organization of box C/D ­RNA-guided RNA methyltransferase. Proc Natl Acad Sci USA 106:13808–13813

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Baserga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bleichert, F., Baserga, S. (2011). Small Ribonucleoproteins in Ribosome Biogenesis. In: Olson, M. (eds) The Nucleolus. Protein Reviews, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0514-6_7

Download citation

Publish with us

Policies and ethics