Skip to main content

Role of the Nucleolus in HIV Infection and Therapy

  • Chapter
  • First Online:
The Nucleolus

Part of the book series: Protein Reviews ((PRON,volume 15))

  • 1464 Accesses

Abstract

HIV (human immunodeficiency virus), the etiological agent of AIDS (acquired immunodeficiency syndrome), is the most studied virus internationally. Treatment and prevention of AIDS-induced opportunistic infections are available with antiretroviral therapy (ART); however, HIV infection is incurable because of the latent integrative states of the virus and the inaccuracy of reverse transcription, which gives rise to HIV microvariants and quasispecies. HIV variants escape recognition and build resistance against current treatments. We have shown that potential therapeutic interventions involve nucleolar-trafficking small RNAs, which include U16 small nucleolar RNA (snoRNA) hammerhead ribozymes (U16Rz), U16 transactivation response (U16TAR) decoys, and U16 rev binding element (U16RBE) decoys. The functional inhibition of HIV-1 mediated by these nucleolar localizing RNAs implicates nucleolar trafficking or accumulation of HIV transcripts. Investigations centering on HIV-1 regulatory proteins Tat and Rev indicate a necessary translocation step for these proteins within nucleoli for successful HIV replication. This chapter reviews the role of the nucleolus in HIV infection and discusses HIV-specific therapies that manipulate nucleolar localization of HIV regulatory proteins and transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki Y, Tosato G (2004) HIV-1 Tat enhances Kaposi sarcoma-associated herpesvirus (KSHV) infectivity. Blood 104:810–814

    PubMed  CAS  Google Scholar 

  • Arrigo S, Beemon K (1988) Regulation of Rous sarcoma virus RNA splicing and stability. Mol Cell Biol 8:4858–4867

    PubMed  CAS  Google Scholar 

  • Bailes E, Gao F, Bibollet-Ruche F, Courgnaud V, Peeters M, et al (2003) Hybrid origin of SIV in chimpanzees. Science 300:1713

    Google Scholar 

  • Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:209–211

    Google Scholar 

  • Barker GF, Beemon K (1991) Nonsense codons within the Rous sarcoma virus gag gene decrease the stability of unspliced viral RNA. Mol Cell Biol 11:2760–2768

    PubMed  CAS  Google Scholar 

  • Barker GF, Beemon K (1994) Rous sarcoma virus RNA stability requires an open reading frame in the gag gene and sequences downstream of the gag-pol junction. Mol Cell Biol 14:1986–1996

    PubMed  CAS  Google Scholar 

  • Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S et al (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    PubMed  CAS  Google Scholar 

  • Bartel DP, Zapp ML, Green MR, Szostak JW (1991) HIV-1 Rev regulation involves recognition of non-Watson-Crick base pairs in viral RNA. Cell 67:529–536

    PubMed  CAS  Google Scholar 

  • Battiste JL, Mao H, Rao NS, Tan R, Muhandiram DR et al (1996) Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science 273:1547–1551

    PubMed  CAS  Google Scholar 

  • Benkirane M, Chun RF, Xiao H, Ogryzko VV, Howard BH et al (1998) Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J Biol Chem 273:24898–24905

    PubMed  CAS  Google Scholar 

  • Berkhout B, Silverman RH, Jeang KT (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282

    PubMed  CAS  Google Scholar 

  • Bogerd HP, Fridell RA, Blair WS, Cullen BR (1993) Genetic evidence that the Tat proteins of human immunodeficiency virus types 1 and 2 can multimerize in the eukaryotic cell nucleus. J Virol 67:5030–5034

    PubMed  CAS  Google Scholar 

  • Bres V, Kiernan R, Emiliani S, Benkirane M (2002) Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 277:22215–22221

    PubMed  CAS  Google Scholar 

  • Broder CC, Berger EA (1995) Fusogenic selectivity of the envelope glycoprotein is a major determinant of human immunodeficiency virus type 1 tropism for CD4+ T-cell lines vs. primary macrophages. Proc Natl Acad Sci U S A 92:9004–9008

    PubMed  CAS  Google Scholar 

  • Buonuomo SB, Michienzi Z, Caffarelli E, Bozzoni I (1999) The Rev protein is able to transport to the cytoplasm small nucleolar RNAs containing a Rev binding element. RNA 5:993–1002

    Google Scholar 

  • Chang DD, Sharp PA (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59:789–795

    PubMed  CAS  Google Scholar 

  • Churcher MJ, Lamont C, Hamy F, Dingwall C, Green SM et al (1993) High affinity binding of TAR RNA by the human immunodeficiency virus type-1 tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region. J Mol Biol 230:90–110

    PubMed  CAS  Google Scholar 

  • Cochrane AW, Perkins A, Rosen CA (1990) Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to ­function. J Virol 64:881–885

    PubMed  CAS  Google Scholar 

  • Coffin J, Haase A, Levy JA, Montagnier L, Oroszlan S et al (1986a) Human immunodeficiency viruses. Science 232:697

    PubMed  CAS  Google Scholar 

  • Coffin J, Haase A, Levy JA, Montagnier L, Oroszlan S et al (1986b) What to call the AIDS virus? Nature 321:10

    PubMed  CAS  Google Scholar 

  • Cook KS, Fisk GJ, Hauber J, Usman N, Daly TJ et al (1991) Characterization of HIV-1 REV protein: binding stoichiometry and minimal RNA substrate. Nucleic Acids Res 19:1577–1583

    PubMed  CAS  Google Scholar 

  • Desrosiers RC, Daniel MD, Li Y (1989) HIV-related lentiviruses of nonhuman primates. AIDS Res Hum Retroviruses 5:465–473

    PubMed  CAS  Google Scholar 

  • Dundr M, Leno GH, Hammarskjold ML, Rekosh D, Helga-Maria C et al (1995) The roles of nucleolar structure and function in the subcellular location of the HIV-1 Rev protein. J Cell Sci 108(Pt 8):2811–2823

    PubMed  CAS  Google Scholar 

  • Efthymiadis A, Briggs LJ, Jans DA (1998) The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 273:1623–1628

    PubMed  CAS  Google Scholar 

  • Fanales-Belasio E, Raimondo M, Suligoi B, Butto S (2010) HIV virology and pathogenetic mechanisms of infection: a brief overview. Ann Ist Super Sanita 46:5–14

    PubMed  CAS  Google Scholar 

  • Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK (1991) Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol 11:2567–2575

    PubMed  CAS  Google Scholar 

  • Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN (1989) rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A 86:1495–1499

    PubMed  CAS  Google Scholar 

  • Fenner F (1975) The classification and nomenclature of viruses. Summary of results of meetings of the International Committee on Taxonomy of Viruses in Madrid, September 1975. Intervirology 6:1–12

    PubMed  Google Scholar 

  • Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483

    PubMed  CAS  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    PubMed  CAS  Google Scholar 

  • Fragapane P, Prislei S, Michienzi A, Caffarelli E, Bozzoni I (1993) A novel small nucleolar RNA (U16) is encoded inside a ribosomal protein intron and originates by processing of the pre-mRNA. EMBO J 12:2921–2928

    PubMed  CAS  Google Scholar 

  • Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    PubMed  CAS  Google Scholar 

  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M et al (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311

    PubMed  CAS  Google Scholar 

  • Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M et al (1984) Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503

    PubMed  CAS  Google Scholar 

  • Gao F, Yue L, White AT, Pappas PG, Barchue J et al (1992) Human infection by genetically diverse SIVSM-related HIV-2 in west Africa. Nature 358:495–499

    PubMed  CAS  Google Scholar 

  • Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM et al (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397:436–441

    PubMed  CAS  Google Scholar 

  • Gardner MB, Luciw PA (1989) Animal models of AIDS. FASEB J 3:2593–2606

    PubMed  CAS  Google Scholar 

  • Gorrill T, Feliciano M, Mukerjee R, Sawaya BE, Khalili K et al (2006) Activation of early gene transcription in polyomavirus BK by human immunodeficiency virus type 1 Tat. J Gen Virol 87:1557–1566

    PubMed  CAS  Google Scholar 

  • Gottlieb MS, Schroff R, Schanker HM, Weisman JD, Fan PT et al (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 305:1425–1431

    PubMed  CAS  Google Scholar 

  • Gross L (1951) Pathogenic properties, and “vertical” transmission of the mouse leukemia agent. Proc Soc Exp Biol Med 78:342–348

    PubMed  CAS  Google Scholar 

  • Gupta S, Boppana R, Mishra GC, Saha B, Mitra D (2008) HIV-1 Tat suppresses gp120-specific T cell response in IL-10-dependent manner. J Immunol 180:79–88

    PubMed  CAS  Google Scholar 

  • Hammerschmid M, Palmeri D, Ruhl M, Jaksche H, Weichselbraun I et al (1994) Scanning mutagenesis of the arginine-rich region of the human immunodeficiency virus type 1 Rev trans activator. J Virol 68:7329–7335

    PubMed  CAS  Google Scholar 

  • Hardy WD (1985) Feline retroviruses. Adv Viral Oncol 5:1–34

    Google Scholar 

  • Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334:585–591

    PubMed  CAS  Google Scholar 

  • Hauber J, Malim MH, Cullen BR (1989) Mutational analysis of the conserved basic domain of human immunodeficiency virus tat protein. J Virol 63:1181–1187

    PubMed  CAS  Google Scholar 

  • Heapy S, Dingwall C, Ernberg I, Gait MJ, Green SM, Kern J, Lowe AD, Singh M, Skinner MA (1990) HIV-1 regulator of virion expression (Rev) protein binds to an RNA stem-loop structure located within the Rev response element region. Cell 60(4):685–693

    Google Scholar 

  • Hope TJ, Huang XJ, McDonald D, Parslow TG (1990) Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci U S A 87:7787–7791

    PubMed  CAS  Google Scholar 

  • Ivey-Hoyle M, Rosenberg M (1990) Rev-dependent expression of human immunodeficiency virus type 1 gp160 in Drosophila melanogaster cells. Mol Cell Biol 10:6152–6159

    PubMed  CAS  Google Scholar 

  • Kalyanaraman VS, Sarngadharan MG, Robert-Guroff M, Miyoshi I, Golde D et al (1982) A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science 218:571–573

    PubMed  CAS  Google Scholar 

  • Karn J (1999) Tackling Tat. J Mol Biol 293:235–254

    PubMed  CAS  Google Scholar 

  • Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H et al (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118

    PubMed  CAS  Google Scholar 

  • Kjems J, Sharp PA (1993) The basic domain of Rev from human immunodeficiency virus type 1 specifically blocks the entry of U4/U6.U5 small nuclear ribonucleoprotein in spliceosome assembly. J Virol 67:4769–4776

    PubMed  CAS  Google Scholar 

  • Kjems J, Calnan BJ, Frankel AD, Sharp PA (1992) Specific binding of a basic peptide from HIV-1 Rev. EMBO J 11:1119–1129

    PubMed  CAS  Google Scholar 

  • Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, et al (2009) HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology 6:18

    PubMed  CAS  Google Scholar 

  • Kubota S, Siomi H, Satoh T, Endo S, Maki M et al (1989) Functional similarity of HIV-I rev and HTLV-I rex proteins: identification of a new nucleolar-targeting signal in rev protein. Biochem Biophys Res Commun 162:963–970

    PubMed  CAS  Google Scholar 

  • Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G (1989) Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res 17:3551–3561

    PubMed  CAS  Google Scholar 

  • Lange TS, Borovjagin A, Maxwell ES, Gerbi SA (1998) Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J 17:3176–3187

    PubMed  CAS  Google Scholar 

  • Levy JA, Hoffman AD, Kramer SM, Landis JA, Shimabukuro JM et al (1984) Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225:840–842

    PubMed  CAS  Google Scholar 

  • Li YP (1997) Protein B23 is an important human factor for the nucleolar localization of the human immunodeficiency virus protein Tat. J Virol 71:4098–4102

    PubMed  CAS  Google Scholar 

  • Liang C, Wainberg MA (2002) The role of Tat in HIV-1 replication: an activator and/or a suppressor? AIDS Rev 4:41–49

    PubMed  CAS  Google Scholar 

  • Lucas SB, Hounnou A, Peacock C, Beaumel A, Djomand G et al (1993) The mortality and pathology of HIV infection in a west African city. AIDS 7:1569–1579

    PubMed  CAS  Google Scholar 

  • Luciw PA (1996) Human immunodeficiency virus and their replication. In: Fields BN, Knippe DM, Howley PM (eds) Field virology. Lippincott-Raven, Philadelphia, pp 1881–1952

    Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989a) Functional dissection of the HIV-1 Rev trans-activator–derivation of a trans-dominant repressor of Rev function. Cell 58:205–214

    PubMed  CAS  Google Scholar 

  • Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989b) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257

    PubMed  CAS  Google Scholar 

  • Malim MH, Tiley LS, McCarn DF, Rusche JR, Hauber J et al (1990) HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 60:675–683

    PubMed  CAS  Google Scholar 

  • Masur H, Michelis MA, Greene JB, Onorato I, Stouwe RA et al (1981) An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med 305:1431–1438

    PubMed  CAS  Google Scholar 

  • Meyer BE, Malim MH (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 8:1538–1547

    PubMed  CAS  Google Scholar 

  • Miceli MC, Parnes JR (1993) Role of CD4 and CD8 in T cell activation and differentiation. Adv Immunol 53:59–122

    PubMed  CAS  Google Scholar 

  • Michienzi A, Cagnon L, Bahner I, Rossi JJ (2000) Ribozyme-mediated inhibition of HIV 1 ­suggests nucleolar trafficking of HIV-1 RNA. Proc Natl Acad Sci U S A 97:8955–8960

    PubMed  CAS  Google Scholar 

  • Michienzi A, Li S, Zaia JA, Rossi JJ (2002) A nucleolar TAR decoy inhibitor of HIV-1 replication. Proc Natl Acad Sci U S A 99:14047–14052

    PubMed  CAS  Google Scholar 

  • Michienzi A, De Angelis FG, Bozzoni I, Rossi JJ (2006) A nucleolar localizing Rev binding element inhibits HIV replication. AIDS Res Ther 3:13

    PubMed  Google Scholar 

  • Mystakidou K, Panagiotou I, Katsaragakis S, Tsilika E, Parpa E (2009) Ethical and practical ­challenges in implementing informed consent in HIV/AIDS clinical trials in developing or resource-limited countries. SAHARA J 6:46–57

    PubMed  Google Scholar 

  • Neuveut C, Jeang KT (1996) Recombinant human immunodeficiency virus type 1 genomes with tat unconstrained by overlapping reading frames reveal residues in Tat important for replication in tissue culture. J Virol 70:5572–5581

    PubMed  CAS  Google Scholar 

  • Ojwang JO, Hampel A, Looney DJ, Wong-Staal F, Rappaport J (1992) Inhibition of human ­immunodeficiency virus type 1 expression by a hairpin ribozyme. Proc Natl Acad Sci U S A 89:10802–10806

    PubMed  CAS  Google Scholar 

  • Perkins A, Cochrane AW, Ruben SM, Rosen CA (1989) Structural and functional characterization of the human immunodeficiency virus rev protein. J Acquir Immune Defic Syndr 2:256–263

    PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD et al (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77:7415–7419

    PubMed  CAS  Google Scholar 

  • Pollard VW, Malim MH (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532

    PubMed  CAS  Google Scholar 

  • Ponti D, Troiano M, Bellenchi GC, Battaglia PA, Gigliani F (2008) The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol 9:32

    PubMed  Google Scholar 

  • Popovic M, Sarngadharan MG, Read E, Gallo RC (1984) Detection, isolation, and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500

    PubMed  CAS  Google Scholar 

  • Preston BD, Poiesz BJ, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171

    PubMed  CAS  Google Scholar 

  • Rambaut A, Posada D, Crandall KA, Holmes EC (2004) The causes and consequences of HIV evolution. Nat Rev Genet 5:52–61

    PubMed  CAS  Google Scholar 

  • Ratner L, Gallo RC, Wong-Staal F (1985) HTLV-III, LAV, ARV are variants of same AIDS virus. Nature 313:636–637

    PubMed  CAS  Google Scholar 

  • Roberts JD, Bebenek K, Kunkel TA (1988) The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173

    PubMed  CAS  Google Scholar 

  • Rous P (1911) A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med 13:397–411

    PubMed  CAS  Google Scholar 

  • Ruben S, Perkins A, Purcell R, Joung K, Sia R et al (1989) Structural and functional characterization of human immunodeficiency virus tat protein. J Virol 63:1–8

    PubMed  CAS  Google Scholar 

  • Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29:10695–10702

    PubMed  CAS  Google Scholar 

  • Samarsky DA, Fournier MJ, Singer RH, Bertrand E (1998) The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J 17: 3747–3757

    PubMed  CAS  Google Scholar 

  • Sandstrom EG, Schooley RT, Ho DD, Byington R, Sarngadharan MG et al (1985) Detection of human anti-HTLV-III antibodies by indirect immunofluorescence using fixed cells. Transfusion 25:308–312

    PubMed  CAS  Google Scholar 

  • Santiago ML, Rodenburg CM, Kamenya S, Bibollet-Ruche F, Gao F et al (2002) SIVcpz in wild chimpanzees. Science 295:465

    PubMed  CAS  Google Scholar 

  • Sarngadharan MG, Popovic M, Bruch L, Schupbach J, Gallo RC (1984) Antibodies reactive with human T-lymphotropic retroviruses (HTLV-III) in the serum of patients with AIDS. Science 224:506–508

    PubMed  CAS  Google Scholar 

  • Schupbach J, Popovic M, Gilden RV, Gonda MA, Sarngadharan MG et al (1984) Serological analysis of a subgroup of human T-lymphotropic retroviruses (HTLV-III) associated with AIDS. Science 224:503–505

    PubMed  CAS  Google Scholar 

  • Sharp PM, Hahn BH (2008) AIDS: prehistory of HIV-1. Nature 455:605–606

    PubMed  CAS  Google Scholar 

  • Siegal FP, Lopez C, Hammer GS, Brown AE, Kornfeld SJ et al (1981) Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 305:1439–1444

    PubMed  CAS  Google Scholar 

  • Siomi H, Shida H, Maki M, Hatanaka M (1990) Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization. J Virol 64:1803–1807

    PubMed  CAS  Google Scholar 

  • Sodora DL, Allan JS, Apetrei C, Brenchley JM, Douek DC et al (2009) Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts. Nat Med 15:861–865

    PubMed  CAS  Google Scholar 

  • Stauber RH, Pavlakis GN (1998) Intracellular trafficking and interactions of the HIV-1 Tat protein. Virology 252:126–136

    PubMed  CAS  Google Scholar 

  • Stettner MR, Nance JA, Wright CA, Kinoshita Y, Kim WK et al (2009) SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the Tat protein of human immunodeficiency virus type 1. J Gen Virol 90:2005–2014

    PubMed  CAS  Google Scholar 

  • Szebeni A, Mehrotra B, Baumann A, Adam SA, Wingfield PT et al (1997) Nucleolar protein B23 stimulates nuclear import of the HIV-1 Rev protein and NLS-conjugated albumin. Biochemistry 36:3941–3949

    PubMed  CAS  Google Scholar 

  • Tan R, Chen L, Buettner JA, Hudson D, Frankel AD (1993) RNA recognition by an isolated alpha helix. Cell 73:1031–1040

    PubMed  CAS  Google Scholar 

  • Temin HM (1964) Nature of the provirus of Rous sarcoma. Natl Cancer Inst Monogr 17:557–570

    Google Scholar 

  • Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:211–213

    Google Scholar 

  • Truant R, Cullen BR (1999) The arginine-rich domains present in human immunodeficiency virus type 1 Tat and Rev function as direct importin beta-dependent nuclear localization signals. Mol Cell Biol 19:1210–1217

    PubMed  CAS  Google Scholar 

  • Turner MA, Palefsky JM (1998) HIV-1 Tat protein increases invasion of human papillomavirus type 16 positive keratinocytes. J Acquir Immune Defic Syndr 17:A13

    PubMed  CAS  Google Scholar 

  • Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328:596–600

    PubMed  CAS  Google Scholar 

  • Venema J, Tollervey D (1999) Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 33:261–311

    PubMed  CAS  Google Scholar 

  • Wang Z, Rana TM (1996) RNA conformation in the Tat-TAR complex determined by site-specific photo-cross-linking. Biochemistry 35:6491–6499

    PubMed  CAS  Google Scholar 

  • Weeks KM, Crothers DM (1991) RNA recognition by Tat-derived peptides: interaction in the major groove? Cell 66:577–588

    PubMed  CAS  Google Scholar 

  • Wei P, Garber ME, Fang SM, Fischer WH, Jones KA (1998) A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92:451–462

    PubMed  CAS  Google Scholar 

  • Weinstein LB, Steitz JA (1999) Guided tours: from precursor snoRNA to functional snoRNP. Curr Opin Cell Biol 11:378–384

    PubMed  CAS  Google Scholar 

  • West MJ, Karn J (1999) Stimulation of Tat-associated kinase-independent transcriptional elongation from the human immunodeficiency virus type-1 long terminal repeat by a cellular enhancer. EMBO J 18:1378–1386

    PubMed  CAS  Google Scholar 

  • Whittle H, Morris J, Todd J, Corrah T, Sabally S et al (1994) HIV-2-infected patients survive longer than HIV-1-infected patients. AIDS 8:1617–1620

    PubMed  CAS  Google Scholar 

  • Wu-Baer F, Sigman D, Gaynor RB (1995) Specific binding of RNA polymerase II to the human immunodeficiency virus trans-activating region RNA is regulated by cellular cofactors and Tat. Proc Natl Acad Sci U S A 92:7153–7157

    PubMed  CAS  Google Scholar 

  • Zolotukhin AS, Felber BK (1999) Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J Virol 73:120–127

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the NIH NIAD to JJR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arizala, J., Rossi, J.J. (2011). Role of the Nucleolus in HIV Infection and Therapy. In: Olson, M. (eds) The Nucleolus. Protein Reviews, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0514-6_17

Download citation

Publish with us

Policies and ethics