Analysis of Injection-Locked Regenerative Frequency Dividers

  • Mohammad Farazian
  • Prasad S Gudem
  • Lawrence  E. Larson


Frequency dividers are one of the most important components of any frequency synthesizer.


Phase Noise Frequency Divider Delay Cell Forward Path Output Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Farazian M (2009) Fast hopping high-frequency carrier generation in digital CMOS technology. Ph.D. dissertation, University of California, San Diego, May 2009Google Scholar
  2. 2.
    Farazian M, Gudem P, Larson L (2010) Fast hopping carrier generation for 14- band multi-band OFDM UWB in digital CMOS. Topical meeting on silicon monolithic integrated circuits in RF systems, Jan 2010Google Scholar
  3. 3.
    Lin C, Wang C-K (2005) A regenerative semi-dynamic frequency divider for mode-1 MB-OFDM UWB hopping carrier generation. In: IEEE ISSCC digest of technical papers, vol 1, pp 206–207, Feb 2005Google Scholar
  4. 4.
    Razavi B (2003) Phase-locking in high-performance systems: from devices to architectures. Wiley, New YorkGoogle Scholar
  5. 5.
    Miller R (1939) Fractional-frequency generators utilizing regenerative modulation. Proc IRE 27(7):446–457CrossRefGoogle Scholar
  6. 6.
    Safarian A, Anand S, Heydari P (2006) On the dynamics of regenerative frequency dividers. IEEE Trans Circuits Syst II: Express Briefs 53(12):1413–1417CrossRefGoogle Scholar
  7. 7.
    Sengupta K, Bhattacharyya T, Hashemi H (2007) A nonlinear transient analysis of regenerative frequency dividers. IEEE Trans Circuits Syst I: Regul Pap 54(12):2646–2660CrossRefGoogle Scholar
  8. 8.
    Zheng H, Luong H (2008) A double-balanced quadrature-input quadrature-output regenerative frequency divider for UWB synthesizer applications. IEEE Trans Circuits Syst I: Regul Pap 55(9):2944–2951MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li J-L, Qu S-W, Xue Q (2008) A theoretical and experimental study of injection-locked fractional frequency dividers. IEEE Trans Microw Theory Tech 56(11):2399–2408CrossRefGoogle Scholar
  10. 10.
    Razavi B (2007) Heterodyne phase locking: a technique for high-frequency division. In: IEEE ISSCC digest of technical papers, pp 428–429, Feb 2007Google Scholar
  11. 11.
    Larsson P (2000) Fractional frequency divider. US Patent 6,157,694, Dec 2000Google Scholar
  12. 12.
    Razavi B (2004) A study of injection locking and pulling in oscillators. IEEE J Solid-State Circuits 39(9):1415–1424CrossRefGoogle Scholar
  13. 13.
    Farazian M, Gudem P, Larson L (2009) A CMOS multi-phase injection-locked frequency divider for V-band operation. IEEE Microw Wireless Compon Lett 3:447–450Google Scholar
  14. 14.
    Adler R (June 1946) A study of locking phenomena in oscillators. Proc IRE 34(6):351–357CrossRefGoogle Scholar
  15. 15.
    Mirzaei A, Heidari M, Bagheri R, Abidi A (2008) Multi-phase injection widens lock range of ring-oscillator-based frequency dividers. IEEE J Solid-State Circuits 43(3):656–671CrossRefGoogle Scholar
  16. 16.
    Chien J, Lu L (2007) Analysis and design of wideband injection-locked ring-oscillators with multiple-input injection. IEEE J Solid-State Circuits 42(9):1906–1915CrossRefGoogle Scholar
  17. 17.
    Gangasani G, Kinget P (2008) Time-domain model for injection locking in nonharmonic oscillators. IEEE Trans Circuits Syst I: Regul Pap 55(6):1648–1658MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wan Y, Lai X, Roychowdhury J (2005) Understanding injection locking in negative-resistance LC oscillators intuitively using nonlinear feedback analysis. In: Proceedings of the IEEE custom integrated circuits conference, pp 729–732, Sept 2005Google Scholar
  19. 19.
    Verma S, Rategh H, Lee T (2003) A unified model for injection-locked frequency dividers. IEEE J Solid-State Circuits 38(6):1015–1027CrossRefGoogle Scholar
  20. 20.
    Mishra C, Valdes-Garcia A, Bahmani F, Batra A, Sanchez-Sinencio E, Silva-Martinez J (Dec. 2005) Frequency planning and synthesizer architectures for multiband OFDM UWB radios. IEEE Trans Microw Theory Tech 53(12):3744–3756CrossRefGoogle Scholar
  21. 21.
    Yan W, Luong H (2001) A 900-MHz CMOS low-phase-noise voltage-controlled ring-oscillator. IEEE Trans Circuits Syst II: Analog Digit Signal Process 48(2):216–221CrossRefGoogle Scholar
  22. 22.
    Hajimiri A, Lee T (1998) A general theory of phase noise in electrical oscillators. IEEE J Solid-State Circuits 33(2):179–194CrossRefGoogle Scholar
  23. 23.
    Hajimiri A, Limotyrakis S, Lee T (1998) Phase noise in multi-gigahertz CMOS ring-oscillators. In: Proceedings of the IEEE custom integrated circuits conference, pp 49–52, May 1998Google Scholar
  24. 24.
    Kuo Y, Weng R (2008) Regenerative frequency divider for 14 sub-band UWB applications. Electron Lett 44(2):111–112CrossRefGoogle Scholar
  25. 25.
    Rabaey J, Chandrakasan A, Nikolic B (2002) Digital integrated circuits. Prentice Hall, Englewood CliffsGoogle Scholar
  26. 26.
    Ismail A, Abidi A (2005) A 3.1- to 8.2-GHz zero-IF receiver and direct frequency synthesizer in 0.18\(\mu \)m SiGe BiCMOS for mode-2 MB-OFDM UWB communication. IEEE J Solid-State Circuits 40(12):2573–2582CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohammad Farazian
    • 1
  • Prasad S Gudem
    • 1
  • Lawrence  E. Larson
    • 2
  1. 1.Qualcomm IncorporatedSan DiegoUSA
  2. 2.Brown School of Engineering Brown UniversityProvidenceUSA

Personalised recommendations