Skip to main content

An Application of Fractional Calculus to Dielectric Relaxation Processes

  • Chapter
  • First Online:
Fractional Dynamics and Control
  • 1978 Accesses

Abstract

Recently fractional calculus has been successfully applied in the description of complex dynamics and proved to be a valuable tool for the solution of non-linear differential equations. In this study, an autocorrelation function obtained from the one-dimensional stochastic Ising model is assumed to be identical to the dipole correlation function of a molecular chain, and the fractional calculus method is applied to obtain a fractional diffusion equation derived from the stochastic Ising model applicable to the dielectric relaxation processes observed in polar materials. The equation is solved by using the Adomian decomposition method. At low temperatures, the solution of the equation is found to be compatible with the Cole–Cole and KWW (Kohlrausch–William–Watts) equations, and also with the algebraic decay relaxation function. Copyright © 2002 IFAC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adomian G (1994) Solving frontier problems of physics: The decomposition method, Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  2. Brey JJ, Prados A (1996) Low-temperature relaxation in the one-dimensional Ising model, Phys Rev E 53(1):458–464

    Article  Google Scholar 

  3. Bozdemir S (1981) Phys Status Solidi B 103:459, Phys Status Solidi B 104 (1981) 37

    Article  MathSciNet  Google Scholar 

  4. Cole KS, Cole RN (1941) Dispersion and absorption in dielectrics: 1. Alternating current characteristics. J Chem Phys 9:341

    Google Scholar 

  5. Das S (2009) A note on fractional diffusion equations. Chaos Solitons Fractals 42:2074–2079

    Article  MATH  Google Scholar 

  6. Davidson DW, Cole RH (1951) Dielectric relaxation in glycerol propylene and n-propanol. J Chem Phys. 19:1484–1490

    Article  Google Scholar 

  7. Glauber RG (1963) Time-dependent statistics of the Ising model. J Math Phys 4:294

    Article  MathSciNet  MATH  Google Scholar 

  8. Havriliak S, Negami S (1966) A complex plane analysis of α dispersions in some polymers. J Polym Sci 14(B):99–117

    Google Scholar 

  9. Ising E (1925) Z Phys 31:253

    Article  Google Scholar 

  10. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics, London

    Google Scholar 

  11. Mainardi F, Luchko Y, Pagnini G (2001) The fundamental solution of the space–time fractional diffusion equation, Fractional Calculus Appl Anal 4(2):153–192

    MathSciNet  MATH  Google Scholar 

  12. Mainardi F, Raberto M, Gorenflo R, Scalas E (2000) Fractional calculus and continuous-time finance II: The waiting-time distribution. arXiv:cond-mat/0006454 v2 11 Nov

    Google Scholar 

  13. Mainardi F (1997) Fractional calculus: some basic problems in continuum and statistical mechanics, In: Fractals and fractional calculus in continuum mechanics, Springer-Verlag, New York, pp 291–348

    Google Scholar 

  14. Metzler R, Klafter J (2002) From stretched exponential to inverse power-law: fractional dynamics, Cole–Cole relaxation processes, and beyond. J Non Cryst Solids 305:81–87

    Article  Google Scholar 

  15. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  16. Metzler R, Barkai E, Klafter J (1999) Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker–Planck equation approach. Phys Rev Lett 82(18):3563–3567

    Article  Google Scholar 

  17. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  18. Novikov VV, Wojciechowski KW, Privalko VP (2000) Anomalous dielectric relaxation of inhomogeneous media with chaotic structure. J Phys Condens Matter 12:4869–4879 (printed in the UK)

    Google Scholar 

  19. Oldham KB, Spanier J (1974) The fractional calculus. Academic, New York

    MATH  Google Scholar 

  20. Podlubny I (1999) Fractional differential equations. Academic, New York

    MATH  Google Scholar 

  21. Ray SS (2008) A new approach for the application of Adomian decomposition method for the solution of fractional space diffusion equation with insulated ends. Appl Math Comput 202:544–549

    Article  MathSciNet  MATH  Google Scholar 

  22. Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30:134–144

    Article  MathSciNet  MATH  Google Scholar 

  23. Uchaikin VV (2003) Relaxation processes and fractional differential equations. Int J Theor Phys 42(1), pp. 121–134

    Article  MATH  Google Scholar 

  24. Williams G, Watts DC, Dev SB, North AM (1971) Further considerations of non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 67:1323335

    Google Scholar 

Download references

Acknowledgements

We thank our friends Prof. Dr Kerim Kıymaç and Prof. Dr Metin Özdemir for their reading and correcting the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Çavuş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Çavuş, M.S., Bozdemir, S. (2012). An Application of Fractional Calculus to Dielectric Relaxation Processes. In: Baleanu, D., Machado, J., Luo, A. (eds) Fractional Dynamics and Control. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0457-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0457-6_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0456-9

  • Online ISBN: 978-1-4614-0457-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics