Skip to main content

Symbolic Computation of Conservation Laws, Generalized Symmetries, and Recursion Operators for Nonlinear Differential–Difference Equations

  • Chapter
  • First Online:
Dynamical Systems and Methods
  • 1250 Accesses

Abstract

Algorithms for the symbolic computation of polynomial conservation laws, generalized symmetries, and recursion operators for systems of nonlinear differential–difference equations (DDEs) are presented. The algorithms can be used to test the complete integrability of nonlinear DDEs. The ubiquitous Toda lattice illustrates the steps of the algorithms, which have been implemented in Mathematica. The codes InvariantsSymmetries.m and DDERecursionOperator.m can aid researchers interested in properties of nonlinear DDEs.

This material is based upon work supported by the National Science Foundation (U.S.A.) under Grant No. CCF-0830783.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldwin DE, Hereman W (2010) A symbolic algorithm for computing recursion operators of nonlinear partial differential equations. Int J Comput Math 87:1094–1119

    Article  MathSciNet  MATH  Google Scholar 

  2. Belov AA, Chaltikian KD (1993) Lattice analogues of W-algebras and classical integrable equations. Phys Lett B 309:268–274

    Article  MathSciNet  MATH  Google Scholar 

  3. Blaszak M, Marciniak K (1994) R-matrix approach to lattice integrable systems. J Math Phys 35:4661–4682

    Article  MathSciNet  MATH  Google Scholar 

  4. Fokas AS (1980) A symmetry approach to exactly solvable evolution equations. J Math Phys 21:1318–1325

    Article  MathSciNet  MATH  Google Scholar 

  5. Fokas AS (1987) Symmetries and integrability. Stud Appl Math 77:253–299

    MathSciNet  MATH  Google Scholar 

  6. Fuchssteiner B, Oevel W, Wiwianka W (1987) Computer-algebra methods for investigation of hereditary operators of higher order soliton equations. Comput Phys Commun 44:47–55

    Article  MathSciNet  MATH  Google Scholar 

  7. Göktaş Ü (1998) Algorithmic computation of symmetries, invariants and recursion operators for systems of nonlinear evolution and differential-difference equations. Ph.D. Thesis, Colorado School of Mines, Golden, 1998

    Google Scholar 

  8. Göktaş Ü, Hereman W (1997) Symbolic computation of conserved densities for systems of nonlinear evolution equations. J Symb Comput 24:591–621

    Article  MATH  Google Scholar 

  9. Göktaş Ü, Hereman W (1998) Computation of conservation laws for nonlinear lattices. Phys D 132:425–436

    Article  Google Scholar 

  10. Göktaş Ü, Hereman W (1999) Algorithmic computation of higher-order symmetries for nonlinear evolution and lattice equations. Adv Comput Math 11:55–80

    Article  MathSciNet  MATH  Google Scholar 

  11. Hénon M (1974) Integrals of the Toda lattice. Phys Rev B 9:1921–1923

    Article  MathSciNet  Google Scholar 

  12. Hereman W (2011) Software. http://inside.mines.edu/~whereman/ (accessed July 27, 2010)

  13. Hereman W, Göktaş Ü (1999) Integrability tests for nonlinear evolution equations. In: Wester M (ed) Computer algebra systems: a practical guide. Wiley, New York, pp 211–232

    Google Scholar 

  14. Hereman W, Göktaş Ü, Colagrosso MD, Miller AJ (1998) Algorithmic integrability tests for nonlinear differential and lattice equations. Comput Phys Comm 115:428–446

    Article  Google Scholar 

  15. Hereman W, Sanders JA, Sayers J, Wang J-P (2004) Symbolic computation of polynomial conserved densities, generalized symmetries, and recursion operators for nonlinear differential-difference equations. In: Winternitz P et al. (ed) Group theory and numerical analysis, CRM Proc. & Lect. Ser., vol 39. AMS, Providence, pp 267–282

    Google Scholar 

  16. Hereman W, Adams PJ, Eklund HL, Hickman MS, Herbst BM (2008) Direct methods and symbolic software for conservation laws of nonlinear equations. In: Yan Z (ed) Advances in nonlinear waves and symbolic computation. Nova Scienc Publishers, New York, pp 18–78

    Google Scholar 

  17. Hickman M (2008) Leading order integrability conditions for differential-difference equations. J Nonlinear Math Phys 15:66–86

    Article  MathSciNet  MATH  Google Scholar 

  18. Olver PJ (1993) Applications of Lie groups to differential equations, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  19. Ramani A, Grammaticos B, Tamizhmani KM (1992) An integrability test for differential-difference systems. J Phys A: Math Gen 25:L883–L886

    Article  MathSciNet  MATH  Google Scholar 

  20. Sahadevan R, Khousalya S (2001) Similarity reductions, generalized symmetries and integrability of Belov-Chaltikian and Blaszak-Marciniak lattice equations. J Math Phys 42:3854–3879

    Article  MathSciNet  MATH  Google Scholar 

  21. Sahadevan R, Khousalya S (2003) Belov-Chaltikian and Blaszak-Marciniak lattice equations. J Math Phys 44:882–898

    Article  MathSciNet  MATH  Google Scholar 

  22. Toda M (1981) Theory of nonlinear lattices. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Wang J-P (1998) Symmetries and conservation laws of evolution equations. Ph.D. Thesis, Thomas Stieltjes Institute for Mathematics, Amsterdam

    Google Scholar 

  24. Wu Y, Geng X (1996) A new integrable symplectic map associated with lattice soliton equations. J Math Phys 37:2338–2345

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

J.A. Sanders, J.-P. Wang, M. Hickman, and B. Deconinck are gratefully acknowledged for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ünal Göktaş .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Göktaş, Ü., Hereman, W. (2012). Symbolic Computation of Conservation Laws, Generalized Symmetries, and Recursion Operators for Nonlinear Differential–Difference Equations. In: Luo, A., Machado, J., Baleanu, D. (eds) Dynamical Systems and Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0454-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0454-5_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0453-8

  • Online ISBN: 978-1-4614-0454-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics