Skip to main content

The Ring Problem of (N+1) Bodies: An Overview

  • Chapter
  • First Online:
Dynamical Systems and Methods

Abstract

The study of N-body systems and their simulation with various models always excited the scientific interest. Here we present an N-body model that has been under investigation in the last 10 years and is called the ring problem of (N+1) bodies, or otherwise the regular polygon problem of (N+1) bodies. In what follows, we give an overview of the scientific work that has been done through all these years, as well as the major results obtained so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arribas M, Elipe A (2004) Bifurcations and equilibria in the extended N-body problem. Mech Res Commun 31:1–8

    Article  MathSciNet  MATH  Google Scholar 

  2. Arribas M, Elipe A, Palacios M (2008) Linear stability of ring systems with generalized central forces. Astron Astrophys 489(2):819–824

    Article  Google Scholar 

  3. Bang D, Elmabsout B (2004) Restricted N + 1-Body problem: existence and stability of relative equilibria. Celest Mech Dyn Astron 89:305–318

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrio R, Blesa F, Serrano S (2008) Qualitative analysis of the (N + 1)-body ring problem. Chaos Solitons Fractals 36:1067–1088

    Article  MathSciNet  MATH  Google Scholar 

  5. Barrio R, Blesa FS, Serrano S (2009) Periodic, escape and chaotic orbits in the Copenhagen and the (n + 1)-body ring problems. Commun Nonlinear Sci Numer Simul 14:2229–2238

    Article  MathSciNet  MATH  Google Scholar 

  6. Bountis T, Papadakis K (2009) The stability of vertical motion in the N-body circular Sitnikov problem. Celest Mech Dyn Astron 104:205–225

    Article  MathSciNet  MATH  Google Scholar 

  7. Broucke R, Elipe A (2005) The dynamics of orbits in a potential field of a solid ring. R + C Dyn 10:1–15

    Google Scholar 

  8. Croustaloudi MN, Kalvouridis TJ (2008) Periodic motions of a small body in the Newtonian field of a regular polygonal configuration of ν + 1 bodies. Astrophys Space Sci 314:7–18

    Article  Google Scholar 

  9. Elipe A, Arribas M, Kalvouridis TJ (2007) Periodic solutions and their parametric evolution in the planar case of the (n + 1) ring problem with oblateness. J Guid Control Dyn 30(6):1640–1648

    Article  Google Scholar 

  10. Goudas C (1991) The N-dipole problem and the rings of Saturn. Predictability, stability and chaos in N-body dynamical systems. NATO ASI Ser B Phys 272:371–385

    Article  MathSciNet  Google Scholar 

  11. Hadjifotinou KG, Kalvouridis TJ (2005) Numerical investigation of periodic motion in the three-dimensional ring problem of N bodies. Int J Bifurcat Chaos 15(8):2681–88

    Article  MathSciNet  MATH  Google Scholar 

  12. Hadjifotinou KG, Kalvouridis TJ, Gousidou-Koutita M (2006) Numerical study of the parametric evolution of bifurcations in the three-dimensional ring problem of N bodies. Mech Res Commun 33:830–836

    Article  MathSciNet  MATH  Google Scholar 

  13. Kalvouridis TJ (1997) A planar case of the n + 1 body problem: the ‘ring’ problem. Astrophys Space Sci 260(3):309–325

    Article  Google Scholar 

  14. Kalvouridis TJ (1999a) Periodic solutions in the ring problem. Astrophys Space Sci 266(4):467–494

    Article  MATH  Google Scholar 

  15. Kalvouridis TJ (1999b) Motion of a small satellite in a planar multi-body surrounding. Mech Res Com 26(4):489–497

    Article  MATH  Google Scholar 

  16. Kalvouridis TJ (2001a) Multiple periodic orbits in the ring problem: families of triple periodic orbits. Astrophys Space Sci 277(4):579–614

    Article  MATH  Google Scholar 

  17. Kalvouridis TJ (2001b) Zero-velocity surfaces in the three-dimensional ring problem of N + 1 bodies. Celest Mech Dyn Astron 80:133–144

    Article  MathSciNet  MATH  Google Scholar 

  18. Kalvouridis TJ (2001c) The effect of radiation pressure on the particle dynamics in ring type N-body configurations. Earth Moon Planets 87(2):87–102

    Article  MathSciNet  Google Scholar 

  19. Kalvouridis TJ (2003) Retrograde orbits in ring configurations of N bodies. Astrophys Space Sci 284(3):1013–1033

    Article  MATH  Google Scholar 

  20. Kalvouridis TJ (2004) On a property of zero-velocity curves in N-body ring type system. Planet Space Sci 52:909–914

    Article  Google Scholar 

  21. Kalvouridis TJ (2008) Particle motions in Maxwell’s ring dynamical systems. Celest Mech Dyn Astron 102(1–3):191–206

    Article  MathSciNet  MATH  Google Scholar 

  22. Kalvouridis TJ, Bratsolis E, Kazazakis D (2008) Radiation effect on a particle’s periodic orbits in a regular polygon configuration of N bodies. Earth Moon Planets 103(3–4):143–159

    Article  MATH  Google Scholar 

  23. Kalvouridis TJ, Hadjifotinou KG (2008) Bifurcations from planar to three-dimensional periodic orbits in the photo-gravitational restricted four-body problem. Int J Bifurcat Chaos 18(2):465–479

    Article  MathSciNet  MATH  Google Scholar 

  24. Kalvouridis TJ, Tsogas V (2002) Rigid body dynamics in the restricted ring problem of N + 1 bodies. Astrophys Space Sci 282(4):751–765

    Article  Google Scholar 

  25. Kazazakis D, Kalvouridis TJ (2004) Deformation of the gravitational field in ring-type N-body systems due to the presence of many radiation sources. Earth Moon Planet 93(2):75–95

    Article  MATH  Google Scholar 

  26. Marañhao D, Llibre J (1999) Ejection-collision orbits and invariant punctured tori in a restricted four-body problem. Celest Mech Dyn Astron 71:1–14

    Article  MATH  Google Scholar 

  27. Maxwell JC (1890) On the stability of the motion of Saturn’s rings. In: Scientific papers of James Clerk Maxwell, vol 1. Cambridge University Press, Cambridge, p 228

    Google Scholar 

  28. Mioc V, Stavinschi M (1998) On the Schwarzschild-type polygonal (n + 1)-body problem and on the associated restricted problem. Baltic Astron 7:637–651

    Google Scholar 

  29. Mioc V, Stavinschi M (1999) On Maxwell’s (n + 1)-body problem in the Manev-type field and on the associated restricted problem. Phys Scripta 60:483–490

    Article  MathSciNet  MATH  Google Scholar 

  30. Ollöngren A (1988) On a particular restricted five-body problem, an analysis with computer algebra. J Symbolic Comput 6:117–126

    Article  MathSciNet  Google Scholar 

  31. Pinotsis A (2005) Evolution and stability of the theoretically predicted families of periodic orbits in the N-body ring problem. Astron Astrophys 432:713–729

    Article  MATH  Google Scholar 

  32. Papadakis KE (2009) Asymptotic orbits in the (N + 1)-body ring problem. Astrophys Space Sci 323:261–272

    Article  MATH  Google Scholar 

  33. Psarros FE, Kalvouridis TJ (2005) Impact of the mass parameter on particle dynamics in a ring configuration of N bodies. Astrophys Space Sci 298:469–488

    Article  MATH  Google Scholar 

  34. Roberts G (2000) Linear stability in the (1 + N)-gon relative equilibrium. World Sci Monogr Ser Math 6:303–331

    Article  Google Scholar 

  35. Salo H, Yoder CF (1988) The dynamics of co-orbital satellite systems. Astron Astrophys 205:309–327

    Google Scholar 

  36. Scheeres DJ (1992) On symmetric central configurations with application to satellite motion about rings. PhD Thesis, The University of Michigan

    Google Scholar 

  37. Scheeres DJ, Vinh NX (1993) The restricted P + 2 body problem. Acta Astronaut 29(4): 237–248

    Article  Google Scholar 

  38. Tsogas V, Kalvouridis TJ, Mavraganis AG (2005) Equilibrium states of a gyrostat satellite moving in the gravitational field of an annular configuration of N big bodies. Acta Mech 175(1–4):181–195

    Article  MATH  Google Scholar 

  39. Vanderbei RJ, Kolemen E (2007) Linear stability of ring systems. Astron J 133:656–664

    Article  Google Scholar 

  40. Wenzhong L, Tongjie Zh, Bin X (2005) A concise numerical analysis on regular polygon solutions for kN-body problem. J Beijing Normal Univ 41(4):386–388

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilemahos J. Kalvouridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kalvouridis, T.J. (2012). The Ring Problem of (N+1) Bodies: An Overview. In: Luo, A., Machado, J., Baleanu, D. (eds) Dynamical Systems and Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0454-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0454-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0453-8

  • Online ISBN: 978-1-4614-0454-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics