Skip to main content

Learning from the Evolution of Cartilage Restoration

  • Chapter
  • First Online:
Cartilage Restoration

Abstract

Cartilage restoration is a highly dynamic field. Not only are the cartilage implants changing, but also the surgical approach to using the implant. Initially, various schools of surgical thought would propose use of their one specific implant. However, this has gradually evolved to a common goal of applying the best implant for the individual knee lesion and specific patient. At the same time, it has become evident to all that it is necessary to optimize the limb and joint environment for all implants. This fusion of thought has resulted in a demand match approach for applying and adapting treatment algorithms. This chapter will present a broad overview of cartilage restoration from inception to present with future chapters exploring each approach in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lexer E. Joint transplantation and arthroplasty. Surg Gynecol Obstet. 1925;40:782–809.

    Google Scholar 

  2. Gross AE, Langer F, Houpt J, et al. Allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Transplant Proc. 1976;8:129–32.

    PubMed  CAS  Google Scholar 

  3. Gross AE, Silverstein EA, Falk J, et al. The allotransplantation of partial joints in the treatment of osteoarthritis of the knee. Clin Orthop Relat Res. 1975;108:7–14.

    Article  PubMed  Google Scholar 

  4. Ficat RP, Ficat C, Gedeon P, et al. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res. 1979;144:74–83.

    PubMed  Google Scholar 

  5. Pridie K. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Am. 1959;41:618–9.

    Google Scholar 

  6. Peterson L, Menche D, Grande D, et al. Chondrocyte transplantation—an experimental model in the rabbit. Trans Orthop Res Soc. 1984;9:218.

    Google Scholar 

  7. Hangody L, Kárpáti Z. New possibilities in the management of severe circumscribed cartilage damage in the knee. Magy Traumatol Ortop Kezseb Plasztikai Seb. 1994;37:237–43.

    PubMed  CAS  Google Scholar 

  8. Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18:67–75.

    Article  PubMed  CAS  Google Scholar 

  9. Fox EJ, Hau MA, Gebhardt MC, et al. Long-term followup of proximal femoral allografts. Clin Orthop Relat Res. 2002:106–13.

    Google Scholar 

  10. Friedlaender GE, Mankin HJ. Transplantation of osteochondral allografts. Annu Rev Med. 1984;35:311–24.

    Article  PubMed  CAS  Google Scholar 

  11. Malinin TI, Mnaymneh W, Lo HK, et al. Cryopreservation of articular cartilage. Ultrastructural observations and long-term results of experimental distal femoral transplantation. Clin Orthop Relat Res. 1994:18–32.

    Google Scholar 

  12. Jomha NM, Lavoie G, Muldrew K, et al. Cryopreservation of intact human articular cartilage. J Orthop Res. 2002;20:1253–5.

    Article  PubMed  CAS  Google Scholar 

  13. Xia Z, Murray D, Hulley PA, et al. The viability and proliferation of human chondrocytes following cryopreservation. J Bone Joint Surg Br. 2008;90:1245–8.

    PubMed  CAS  Google Scholar 

  14. Kainer MA, Linden JV, Whaley DN, et al. Clostridium infections associated with musculoskeletal-tissue allografts. N Engl J Med. 2004;350:2564–71.

    Article  PubMed  CAS  Google Scholar 

  15. Guidance, Compliance & Regulatory Information (Biologics). http://www.fda.gov/cber/guidelines.htm#tissval. [updated 2002; cited February 25, 2012].

  16. Williams RJ, Ranawat AS, Potter HG, et al. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007;89:718–726.

    Article  PubMed  Google Scholar 

  17. Allen RT, Robertson CM, Pennock AT, et al. Analysis of stored osteochondral allografts at the time of surgical implantation. Am J Sports Med. 2005;33:1479–84.

    Article  PubMed  Google Scholar 

  18. Pallante AL, Bae WC, Chen AC, et al. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am J Sports Med. 2009;37(Suppl 1):24–32 S.

    Google Scholar 

  19. Kim HT, Teng MS, Dang AC. Chondrocyte apoptosis: implications for osteochondral allograft transplantation. Clin Orthop Relat Res. 2008;466:1819–25.

    Article  PubMed  Google Scholar 

  20. Kang RW, Friel NA, Williams JM, et al. Effect of impaction sequence on osteochondral graft damage: the role of repeated and varying loads. Am J Sports Med. 2010;38:105–13.

    Article  PubMed  Google Scholar 

  21. Pylawka TK, Wimmer M, Cole BJ, et al. Impaction affects cell viability in osteochondral tissues during transplantation. J Knee Surg. 2007;20:105–10.

    PubMed  Google Scholar 

  22. Gross AE, Kim W, Las Heras F, et al. Fresh osteochondral allografts for posttraumatic knee defects: long-term followup. Clin Orthop Relat Res. 2008;466:1863–70.

    Article  PubMed  CAS  Google Scholar 

  23. Convery FR, Meyers MH, Akeson WH. Fresh osteochondral allografting of the femoral condyle. Clin Orthop Relat Res. 1991;273:139–45.

    PubMed  Google Scholar 

  24. Williams JM, Virdi AS, Pylawka TK, et al. Prolonged-fresh preservation of intact whole canine femoral condyles for the potential use as osteochondral allografts. J Orthop Res. 2005;23:831–7.

    Article  PubMed  Google Scholar 

  25. Williams SK, Amiel D, Ball ST, et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85-A:2111–20.

    Google Scholar 

  26. Bujia J, Alsalameh S, Naumann A, et al. Humoral immune response against minor collagens type IX and XI in patients with cartilage graft resorption after reconstructive surgery. Ann Rheum Dis. 1994;53:229–34.

    Article  PubMed  CAS  Google Scholar 

  27. Friedlaender GE. Immune responses to osteochondral allografts. Current knowledge and future directions. Clin Orthop Relat Res. 1983;174:58–68.

    PubMed  Google Scholar 

  28. Friedlaender GE, Horowitz MC. Immune responses to osteochondral allografts: nature and significance. Orthopedics. 1992;15:1171–5.

    PubMed  CAS  Google Scholar 

  29. Yagishita K, Thomas BJ. Use of allograft for large Hill-Sachs lesion associated with anterior glenohumeral dislocation. A case report. Injury. 2002;33:791–4.

    Article  PubMed  Google Scholar 

  30. Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. II. Donor-specific anti-HLA antibodies in human recipients of freeze-dried allografts. J Bone Joint Surg Am. 1984;66:107–12.

    PubMed  CAS  Google Scholar 

  31. Sirlin CB, Brossmann J, Boutin RD, et al. Shell osteochondral allografts of the knee: comparison of MR imaging findings and immunologic responses. Radiology. 2001;219:35–43.

    PubMed  CAS  Google Scholar 

  32. Albrecht F, Roessner A, Zimmermann E. Closure of osteochondral lesions using chondral fragments and fibrin adhesive. Arch Orthop Trauma Surg. 1983;101:213–7.

    Article  PubMed  CAS  Google Scholar 

  33. Ahmed TAE, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration. Tissue engineering. Part B. Reviews. 2010;16:305–29.

    CAS  Google Scholar 

  34. Bonner KF, Daner W. Yao JQ. 2-year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg. 2010;23:109–14.

    Article  PubMed  Google Scholar 

  35. Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2:346–53.

    Article  Google Scholar 

  36. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2:54–69.

    Article  PubMed  CAS  Google Scholar 

  37. Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;391:S362–9.

    Google Scholar 

  38. Frisbie DD, Morisset S, Ho CP, et al. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med. 2006;34:1824–31.

    Article  PubMed  Google Scholar 

  39. Beitzel K, McCarthy MB, Cote MP, et al. Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy. 2012;28:74–84.

    Article  PubMed  Google Scholar 

  40. Gill TJ, McCulloch PC, Glasson SS, et al. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am J Sports Med. 2005;33:680–5.

    Article  PubMed  Google Scholar 

  41. Marder RA, Hopkins G, Timmerman LA. Arthroscopic microfracture of chondral defects of the knee: a comparison of two postoperative treatments. Arthroscopy. 2005;21:152–8.

    Article  PubMed  Google Scholar 

  42. McNickle AG, Provencher MT, Cole BJ. Overview of existing cartilage repair technology. Sports Med Arthrosc. 2008;16:196–201.

    Article  PubMed  Google Scholar 

  43. Steadman JR, Briggs KK, Rodrigo JJ, et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19:477–84.

    Article  PubMed  Google Scholar 

  44. Knutsen G, Engebretsen L, Ludvigsen TC, et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am. 2004;86-A:455–64.

    Google Scholar 

  45. Chen H, Chevrier A, Hoemann CD, et al. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med. 2011;39:1731–40.

    Article  PubMed  Google Scholar 

  46. Chen H, Sun J, Hoemann CD, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27:1432–8.

    Article  PubMed  Google Scholar 

  47. Chubinskaya S, Merrihew C, Cs-Szabo G, et al. Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem. 2000;48:239–50.

    Article  PubMed  CAS  Google Scholar 

  48. Klein-Nulend J, Louwerse RT, Heyligers IC, et al. Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res. 1998;40:614–20.

    Article  PubMed  CAS  Google Scholar 

  49. Klein-Nulend J, Semeins CM, Mulder JW, et al. Stimulation of cartilage differentiation by osteogenic protein-1 in cultures of human perichondrium. Tissue Eng. 1998;4:305–13.

    Article  PubMed  CAS  Google Scholar 

  50. McIlwraith CW, Frisbie DD, Rodkey WG, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011;27:1552–61.

    Article  PubMed  Google Scholar 

  51. Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  PubMed  Google Scholar 

  52. Gomoll AH, Probst C, Farr J, et al. Use of a type I/III bilayer collagen membrane decreases reoperation rates for symptomatic hypertrophy after autologous chondrocyte implantation. Am J Sports Med. 2009;37(Suppl 1):20–23 S.

    Google Scholar 

  53. Steinwachs M. New technique for cell-seeded collagen-matrix-supported autologous chondrocyte transplantation. Arthroscopy. 2009;25:208–11.

    Article  PubMed  Google Scholar 

  54. Steinwachs M, Peterson L, Bobiv V, et al. Cell-seeded collagen matrix–supported autologous chondrocyte transplantation (ACT-CS): a consensus statement on surgical technique. Cartilage. 2012;3:5–12.

    Article  CAS  Google Scholar 

  55. Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38:1259–71.

    Article  PubMed  Google Scholar 

  56. Lu Y, Dhanaraj S, Wang Z, et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair. J Orthop Res. 2006;24:1261–70.

    Article  PubMed  Google Scholar 

  57. Cole BJ, Farr J, Winalski CS, et al. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.

    Article  PubMed  Google Scholar 

  58. International Cartilage Restoration Society. MR imaging results of particulated juvenile cartilage allograft for repair of chondral lesions in the knee. Montreal, CA: International Cartilage Restoration Society; 2012.

    Google Scholar 

  59. Ahmad CS, Cohen ZA, Levine WN, et al. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med. 2001;29:201–6.

    PubMed  CAS  Google Scholar 

  60. Garretson R, Katolik L, Verma N, et al. Contact pressure at osteochondral donor sites in the patellofemoral joint. Am J Sports Med. 2004;32:967–74.

    Article  PubMed  Google Scholar 

  61. Hangody L, Kish G, Kárpáti Z, et al. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998;21:751–6.

    PubMed  CAS  Google Scholar 

  62. Koh JL, Wirsing K, Lautenschlager E, et al. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med. 2004;32:317–20.

    Article  PubMed  Google Scholar 

  63. Huntley JS, Bush PG, McBirnie JM, et al. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J Bone Joint Surg Am. 2005;87:351–60.

    Article  PubMed  CAS  Google Scholar 

  64. International Cartilage Repair Society Meeting. SF-36 score and outcome for autologous chondrocyte implantation of the knee. Toronto, Canada: International Cartilage Repair Society Meeting; 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Farr M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Farr, J., Gomoll, A. (2014). Learning from the Evolution of Cartilage Restoration. In: Farr, J., Gomoll, A. (eds) Cartilage Restoration. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0427-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0427-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0426-2

  • Online ISBN: 978-1-4614-0427-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics