Skip to main content
  • 1175 Accesses

Abstract

The squaring circuits are very important blocks in analog signal processing, representing the core for implementing any continuous function, using the limited Taylor series expansion. The squaring function can be relatively easily obtained considering the squaring characteristic of the MOS transistor biased in saturation region. Referring to the input variable, the squaring circuits can be clustered in two important classes: voltage squarers and current squarers, for both of them, the output variable being, usually, a current. The first part of the chapter is dedicated to the analysis of the mathematical relations that represent the functional core of the designed circuits, while, in the second part of the chapter, starting from these elementary principles, there are analyzed and designed concrete squaring circuits, grouped following these mathematical principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sato H, Hyogo A, Sekine K (2002) A Vt-zero equivalent MOSFET and its applications. In: IEEE international symposium on circuits and systems V-497–V-500, Arizona, USA

    Google Scholar 

  2. Filanovsky IM, Baltes H (1992) CMOS two-quadrant multiplier using transistor triode regime. IEEE J Solid-State Circuits 27:831–833

    Article  Google Scholar 

  3. Popa C (2009) High accuracy CMOS multifunctional structure for analog signal processing. In: International semiconductor conference, pp 427–430, Sinaia, Romania

    Google Scholar 

  4. De La Cruz Blas CA, Feely O (2008) Limit cycle behavior in a class-AB second-order square root domain filter. In: IEEE international conference on electronics, circuits and systems, St. Julien’s, pp 117–120, Malta

    Google Scholar 

  5. Zarabadi SR, Ismail M, Chung-Chih H (1998) High performance analog VLSI computational circuits. IEEE J Solid-State Circuits 33:644–649

    Article  Google Scholar 

  6. Zele RH, Allstot DJ, Fiez TS (1991) Fully-differential CMOS current-mode circuits and applications. In: IEEE international symposium on circuits and systems, Westin Stamford, pp 1817–1820, Raffles City, Singapore

    Google Scholar 

  7. Demosthenous A, Panovic M (2005) Low-voltage MOS linear transconductor/squarer and four-quadrant multiplier for analog VLSI. IEEE Trans Circuits Syst I, Reg Pap 52:1721–1731

    Article  Google Scholar 

  8. Lee BW, Sheu BJ (1990) A high slew-rate CMOS amplifier for analog signal processing. IEEE J Solid-State Circuits 25:885–889

    Article  Google Scholar 

  9. Kumar JV, Rao KR (2002) A low-voltage low power square-root domain filter. In: Asia-Pacific conference on circuits and systems, pp 375–378, Bali, Indonesia

    Google Scholar 

  10. Klumperink E, van der Zwan E, Seevinck E (1989) CMOS variable transconductance circuit with constant bandwidth. Electron Lett 25:675–676

    Article  Google Scholar 

  11. El Mourabit A, Sbaa MH, Alaoui-Ismaili Z, Lahjomri F (2007) A CMOS transconductor with high linear range. In: IEEE international conference on electronics, circuits and systems, pp 1131–1134, Marrakech, Morocco

    Google Scholar 

  12. Popa C (2006) Improved linearity active resistor using equivalent FGMOS devices. In: International conference on microelectronics, 396–399, Nis, Serbia and Montenegro

    Google Scholar 

  13. Popa C (2006) Improved linearity active resistor with increased frequency response for VLSI applications. IEEE international conference on automation, quality and testing, robotics, Cluj-Napoca, pp 114–116, Romania

    Google Scholar 

  14. Vlassis S, Siskos S (2001) Differential-voltage attenuator based on floating-gate MOS transistors and its applications. IEEE Trans Circuits Syst I, Fundam Theory Appl 48:1372–1378

    Article  Google Scholar 

  15. Shen-Iuan L, Cheng-Chieh C (1996) A CMOS square-law vector summation circuit. IEEE Trans Circuits Syst II, Analog Digit Signal Process 43:520–523

    Article  Google Scholar 

  16. Giustolisi G, Palmisano G, Palumbo G (1997) 1.5 V power supply CMOS voltage squarer. Electron Lett 33:1134–1136

    Article  Google Scholar 

  17. Kimura K (1994) Analysis of “An MOS four-quadrant analog multiplier using simple two-input squaring circuits with source followers”. IEEE Trans Circuits Syst I, Fundam Theory Appl 41:72–75

    Article  Google Scholar 

  18. El Mourabit A, Lu GN, Pittet P (2005) Wide-linear-range subthreshold OTA for low-power, low-voltage and low-frequency applications. IEEE Trans Circuits Syst I, Reg Pap 52:1481–1488

    Article  Google Scholar 

  19. Popa C (2010) Improved linearity CMOS active resistor based on complementary computational circuits. In: IEEE international conference on electronics, circuits, and systems, Athens, 455–458, Greece

    Google Scholar 

  20. Popa C (2004) A new FGMOS active resistor with improved linearity and frequency response. In: International semiconductor conference, 2:295–298, Sinaia, Romania

    Google Scholar 

  21. Manolescu AM, Popa C (2009) Low-voltage low-power improved linearity CMOS active resistor circuits. Springer J Analog Integr Circuits Signal Process 62:373–387

    Article  Google Scholar 

  22. Popa C (2008) Programmable CMOS active resistor using computational circuits. In: International semiconductor conference, Sinaia, pp 389–392, Romania

    Google Scholar 

  23. Jong-Kug S, Charlot JJ (1999) Design and applications of precise analog computational circuits. Midwest Symposium on Circuits and Systems, Las Cruces, pp 275–278

    Google Scholar 

  24. Xiang-Luan Jia WH, Shi-Cai Q (1995) A new CMOS analog multiplier with improved input linearity. In: IEEE region 10 international conference on microelectronics and VLSI, pp 135–136, Hong Kong

    Google Scholar 

  25. Jong-Kug S, Charlot JJ (2000) A CMOS inverse trigonometric function circuit. In: IEEE midwest symposium on circuits and systems, pp 474–477, Michigan, USA

    Google Scholar 

  26. Popa C (2004) A digital-selected current-mode function generator for analog signal processing applications. In: International semiconductor conference, 2: 495–498, Sinaia, Romania

    Google Scholar 

  27. Quoc-Hoang D, Hoang-Nam D, Trung-Kien N, Sang-Gug L (2004) All CMOS current-mode exponential function generator. In: International conference on advanced communication technology, Korea, pp 528–531

    Google Scholar 

  28. Landolt O, Vittoz E, Heim P (1992) CMOS selfbiased Euclidean distance computing circuit with high dynamic range. Electron Lett 28:352–354

    Article  Google Scholar 

  29. Cheng-Chieh C, Shen-Iuan L (2000) Current-mode full-wave rectifier and vector summation circuit. Electron Lett 36:1599–1600

    Article  Google Scholar 

  30. Singh S, Radhakrishna Rao K (2006) Low voltage analogue multiplier. In: IEEE Asia pacific conference on circuits and systems, pp 1772–1775, Singapore

    Google Scholar 

  31. Boonchu B, Surakampontom W (2003) A CMOS current-mode squarer/rectifier circuit. In: International symposium on circuits and systems, pp I-405–I-408, Bangkok, Thailand

    Google Scholar 

  32. De La Blas CA, Lopez A (2008) A novel two quadrant MOS translinear squarer-divider cell. In: IEEE international conference on electronics, circuits and systems, St. Julien’s, pp 5–8, Malta

    Google Scholar 

  33. Naderi A, Khoei A, Hadidi K (2007) High speed, low power four-quadrant CMOS current-mode multiplier. In: IEEE international conference on electronics, circuits and systems, Marrakech, pp 1308–1311, Morocco

    Google Scholar 

  34. Chuen-Yau C, Ju-Ying T, Bin-Da L(1998) Current-mode circuit to realize fuzzy classifier with maximum membership value decision. In: IEEE international symposium on circuits and systems, Monterey, 3:243–246, USA

    Google Scholar 

  35. Naderi A et al (2009) Four-quadrant CMOS analog multiplier based on new current squarer circuit with high-speed. In: IEEE international conference on “computer as a tool”, St.-Petersburg, pp 282–287, Russia

    Google Scholar 

  36. Popa C (2009) A new CMOS current-mode classifier circuit for statistics applications. In: International conference on neural networks, pp 17–20, Prague, Czech Republic

    Google Scholar 

  37. Popa C (2006) CMOS quadratic circuits with applications in VLSI designs. In: International conference on signals and electronic systems, pp 627–630, Lodz, Poland

    Google Scholar 

  38. Popa C (2008) Low-power high precision integrated nanostructure with superior-order curvature-corrected logarithmic core. In: International conference on IC design and technology, pp xii–xvii, Grenoble, France

    Google Scholar 

  39. Popa C (2009) Logarithmical curvature-corrected voltage reference with improved temperature behavior. J Circuits, Syst Comput 18:519–534

    Article  Google Scholar 

  40. Popa C (2009) Logarithmic compensated voltage reference. In: Spanish conference on electron devices, Santiago de Compostela, pp 215–218, Spain

    Google Scholar 

  41. Popa C (2007) Improved accuracy function generator circuit for analog signal processing. In: International conference on “computer as a tool”, Warsaw, pp 231–236, Poland

    Google Scholar 

  42. Sawigun C, Serdijn WA (2009) Ultra-low-power, class-AB, CMOS four-quadrant current multiplier. Electron Lett 45:483–484

    Article  Google Scholar 

  43. Popa C (2004) FGMOST-based temperature-independent Euclidean distance circuit. In: International conference on optimization of electric and electronic equipment, pp 29–32, Brasov, Romania

    Google Scholar 

  44. Kumngern M, Chanwutitum J, Dejhan K (2008) Simple CMOS current-mode exponential function generator circuit. In: International conference on electrical engineering/electronics, computer, telecommunications and information technology, Krabi, pp 709–712, Thailand

    Google Scholar 

  45. Kircay A, Keserlioglu MS, Cam U (2009) A new current-mode square-root-domain notch filter. In: european conference on circuit theory and design, Antalya, pp 229–232, Turkey

    Google Scholar 

  46. De La Cruz-Blas CA, Lopez-Martin AJ, Carlosena A (2005) 1.5-V square-root domain second-order filter with on-chip tuning. IEEE Trans Circuits Syst I, Reg Pap 52:1996–2006

    Article  Google Scholar 

  47. Vlassis S, Fikos G, Siskos S (2001) A floating gate CMOS Euclidean distance calculator and its application to hand-written digit recognition. In: International conference on image processing, pp 350–353, Thessaloniki, Greece

    Google Scholar 

  48. Popa C (2005) CMOS logarithmic curvature-corrected voltage reference using a multiple differential structure. In: International symposium on signals, circuits and systems, pp 413–416, Iasi, Romania

    Google Scholar 

  49. Popa C (2003) DTMOST low-voltage low-power voltage references with superior-order curvature-corrections. In: European conference on circuits theory and design, pp 38–41, Krakow, Poland

    Google Scholar 

  50. Hidayat R, Dejhan K, Moungnoul P, Miyanaga Y (2008) OTA-based high frequency CMOS multiplier and squaring circuit. In: International symposium on intelligent signal processing and communications systems, pp 1–4, Bangkok, Thailand

    Google Scholar 

  51. Machowski W, Kuta S, Jasielski J, Kolodziejski W (2010) Quarter-square analog four-quadrant multiplier based on CMOS invertes and using low voltage high speed control circuits. In: International conference on mixed design of integrated circuits and systems, Warsaw, pp 333–336, Poland

    Google Scholar 

  52. Raikos G, Vlassis S (2009) Low-voltage CMOS voltage squarer. In: IEEE international on electronics, circuits, and systems, pp 159–162, Medina, Tunisia

    Google Scholar 

  53. Muralidharan R, Chip-Hong C (2009) Fixed and variable multi-modulus squarer architectures for triple moduli base of RNS. In: IEEE international conference on circuits and systems, Taipei, pp 441–444, Taiwan

    Google Scholar 

  54. Garofalo V et al (2010) A novel truncated squarer with linear compensation function. In: IEEE international symposium on circuits and systems, Paris, pp 4157–4160, France

    Google Scholar 

  55. Kumbun J, Lawanwisut S, Siripruchyanun M (2009) A temperature-insensitive simple current-mode squarer employing only multiple-output CCTAs. In: IEEE region 10 conference, Singapore, pp 1–4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosmin Radu Popa .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Popa, C.R. (2012). Squaring Circuits. In: Synthesis of Computational Structures for Analog Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0403-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0403-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0402-6

  • Online ISBN: 978-1-4614-0403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics