Particle Deposition in the Human Respiratory Tract

  • Philip K. Hopke
  • Zuocheng Wang


Ambient airborne particles are now strongly linked with adverse health effects with stringent standards being set to protect public health particularly for smaller sized particles (particles with aerodynamic diameters less than 2.5 μm, PM2.5). However, as noted elsewhere in this volume, there are a variety of medicines and therapeutic agents that can be effectively delivered through aerosolization and deposition in the lungs. Thus, the details of particle deposition in the human respiratory tract are important to human health for both good or ill. Airborne particles can penetrate into various portions of the respiratory tract during inhalation with a small fraction depositing on the airway surfaces. In this way, various hazardous or beneficial materials can be introduced into the body. Particle deposition in human airways takes exposure to particles to deposited dose in specific locations in the body. It is vital to the effective administration of pharmaceutical aerosols by inhalation to be able to deliver the particles to targeted regions of the respiratory tract.


Deposition Extra thorasic Thorasic Alveolar 


  1. 1.
    International Commission on Radiological Protection. 1994. Human respiratory tract model for radiological protection: a report of a task group of the International Commission on Radiological Protection. Oxford, United Kingdom: Elsevier Science Ltd. (ICRP publication 66; Annals of the ICRP: v. 24, pp. 1-482).Google Scholar
  2. 2.
    U.S. Environmental Protection Agency. 1996. Air quality criteria for particulate matter. Research Triangle Park, NC: National Center for Environmental Assessment-RTP Office; report nos. EPA/600/P-95/001aF-cF. 3v.Google Scholar
  3. 3.
    Hinds, W.C., Aerosol technology: Properties, behavior, and measurement of airborne particles. (2nd ed.), New York: Wiley, 1999.Google Scholar
  4. 4.
    Wang, Z., Hopke, P.K., Ahmadi, G., Cheng, Y.S., Baron, P.A.. J. Aerosol Sci. 2008, 39, 1040–1054.CrossRefGoogle Scholar
  5. 5.
    Su, W.C., Cheng, Y.S.,2005. Deposition of fiber in the human nasal airway. Aerosol Science and Technology, 39, 888–901.CrossRefGoogle Scholar
  6. 6.
    Ingham, D.B.,1975. Diffusion of Aerosols from a Stream Flowing Through a Cylindrical Tube, J. Aerosol Sci. 6, 125-132.CrossRefGoogle Scholar
  7. 7.
    Tan, C. W.,1969. Diffusion Of Disintegration Products of Inert Gases In Cylindrical Tubes, Int. J. Heat Mass Transfer 12, 471-478.CrossRefGoogle Scholar
  8. 8.
    Prodi, V., Mularoni, A.,1985. Electrostatic lung deposition experiments with human and animals. Ann. Occup. Hyg. 29: 229-240CrossRefGoogle Scholar
  9. 9.
    Ferin, J., Mercer, T.T., Leach, L.J.,1983. The effect of aerosol charge on the deposition and clearance of titanium dioxide particles in rats. Environ. Res. 31: 145-151.CrossRefGoogle Scholar
  10. 10.
    Vincent, J.H., Johnston, W.B., Jones, A.D., Johnston, A.M.,1981. Static electrification of airborne asbestos: A study of its causes, assessment and effects on deposition in the lungs of rats. Am. Ind. Hyg. Asssoc. J. 42:711-721.CrossRefGoogle Scholar
  11. 11.
    Vincent, J.H.,1985. On the practical significance of electrostatic lung deposition of isometric and fibrous aerosols. J Aerosol Sci. 16: 511-519.Google Scholar
  12. 12.
    Yu, C.P.,1985. Theories of electrostatic lung deposition of inhaled aerosols. Ann. Occup. Hyg. 29: 219-227.CrossRefGoogle Scholar
  13. 13.
    Schlesinger, R. B. (1989) Deposition and clearance of inhaled particles. In: McClellan, R. O.; Henderson, R. F., eds. Concepts in inhalation toxicology. New York, NY: Hemisphere Publishing Corp.; pp. 163-192.Google Scholar
  14. 14.
    U.S. Environmental Protection Agency. 2004. Air Quality Criteria for Particulate Matter, Volume II of II, Environmental Protection Agency Report No. EPA/600/P-99/002bF, October 2004.Google Scholar
  15. 15.
    International Commission on Radiation Protection, 1966. Task Group on Lung Dynamics, Health Phys. 12, 173-207.Google Scholar
  16. 16.
    Pattle, R.E.,1961. The Retention of Gases and Particles in the Human Nose. In: Inhaled Particles and Vapours, C.N.Davies, ed., Pergamon Press, Oxford, UK.Google Scholar
  17. 17.
    Yu, C.P., Diu, C.K., Soong, T.T.,1981. Statistical Analysis of Aerosol Deposition in Nose and Mouth. Am. Ind. Hyg. Assoc. J. 42:726–733.CrossRefGoogle Scholar
  18. 18.
    Kelly, J.T., Asgharian, B., Kimbell, J., Wong, B.A.,2004. Particle deposition in human nasal airway replicas manufactured by different methods, Part I: Inertial regime particles. Aerosol Science and Technology, 38, 1036–1071.Google Scholar
  19. 19.
    Stahlhofen, W., Rudolf, G., James, A.C.,1989. Intercomparison of experimental regional aerosol deposition data. Journal of Aerosol Medicine, 2, 285–308.CrossRefGoogle Scholar
  20. 20.
    Swift, D.L.,1991. Inspiratory Inertial Deposition of Aerosols in Human Airway Replicate Casts: Implication for the Proposed NCRP Lung Model. Radiat. Prot. Dosim. 38:29–34.Google Scholar
  21. 21.
    Swift, D.L., Montassier, N., Hopke, P.K., Karpen-Hayes, K., Cheng, Y.S., Su, Y-F., Yeh, H.C., Strong, J.C.,1992. Inspiratory Deposition of Ultrafine Particles in Human Nasal Replicate Casts, J. Aerosol Sci. 23, 65-72.CrossRefGoogle Scholar
  22. 22.
    Cheng, Y.S.,2003. Aerosol deposition in the extrathoracic region. Aerosol Science and Technology, 37, 659–671.CrossRefGoogle Scholar
  23. 23.
    Kesavanathan, J., Swift, D.L.,1998. Human nasal passage particle deposition: The effect of particle size, flow rate, and anatomical factors. Aerosol Science and Technology, 28, 457–463.CrossRefGoogle Scholar
  24. 24.
    Kesavanathan, J., Bascom, R., Swift, D.L.,1998. The effect of nasal passage characteristics on particle deposition. Journal of Aerosol Medicine, 11, 27–39.CrossRefGoogle Scholar
  25. 25.
    Stahlhofen, W., Gebhart, J., Heyder, J.,1980. Experimental determination of the regional deposition of aerosol particles in the human respiratory tract, Am. Ind. Hyg. Assoc. J. 41, 385-398.CrossRefGoogle Scholar
  26. 26.
    Heyder, J., Gebhart, J., Rudolf, G., Schiller, C.F., Stahlhofen, W.,1986. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm, J. Aerosol Science, 17, 811-825.CrossRefGoogle Scholar
  27. 27.
    Wilson, F.J., Jr, Hiller, F.C., Wilson, J.D., Bone, R.C.,1985. Quantitative deposition of ultrafine stable particles in the human respiratory tract. J Appl Physiol 58,223–229.CrossRefGoogle Scholar
  28. 28.
    Schiller, C.F., Gebhart, J., Heyder, J., Rudolf, G., Stahlhofen, W.,1988. Deposition of monodisperse insoluble aerosol particles in the 0.005 to 0.2 μm size. Ann Occup Hyg 32 (Suppl. 1), 41–49.CrossRefGoogle Scholar
  29. 29.
    Anderson, P.J., Wilson, J.D., Hiller, F.C.,1990. Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease Chest 97, 1115–1120.CrossRefGoogle Scholar
  30. 30.
    Jaques, P.A., Kim, C.S.,2000. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol 12, 715-731.CrossRefGoogle Scholar
  31. 31.
    Kim, C.S., Jaques, P.A.,2000. Respiratory dose of inhaled ultrafine particles in healthy adults. Philos Trans R Soc Lond A 358, 2693–2705.CrossRefGoogle Scholar
  32. 32.
    Brown, J.S., Zeman, K.L., Bennett, W.D.,2002. American Journal of Respiratory and Critical Care Medicine 166, 1240-1247.CrossRefGoogle Scholar
  33. 33.
    Schlesinger, R.B., Lippmann, M.,1972. Particle Deposition in Casts of the Human Upper Tracheobronchial Tree, Am. Ind. Hyg. Assoc. J. 33, 237–251.CrossRefGoogle Scholar
  34. 34.
    Schlesinger, R.B., Bohning, D.E., Chan, T.L., Lippmann, M.,1977. Particle Deposition in a Hollow Cast of Human Tracheobronchial Tree, J. Aerosol Sci. 8:429–445.CrossRefGoogle Scholar
  35. 35.
    Chan, T.L., Lippmann, M., Cohen, V.R., and Schlesinger, R.B.,1978. Effect of Electrostatic Charges on Particle Deposition in a Hollow Cast of the Human Larynx-tracheobronchial Tree, J. Aerosol Sci. 9, 463–468.CrossRefGoogle Scholar
  36. 36.
    Chan, T.L., Lippmann, M.,1980. Experimental Measurements and Empirical Modeling of the Regional Deposition of Inhaled Particles in Humans, Am. Ind. Hyg. Assoc. J. 41, 399–409.CrossRefGoogle Scholar
  37. 37.
    Gurman, J.L., Lippmann, M., Schlesinger, R B.,1984. Particle Deposition in Replicate Casts of Human Upper Tracheobronchial Tree Under Constant and Cyclic Inspiratory Flow: I. Experimental, Aerosol Sci. Technol. 3, 245–252.CrossRefGoogle Scholar
  38. 38.
    Cohen, B.S., Susman, R.G., Lippmann, M.,1990. Ultrafine Particle Deposition in a Human Tracheobronchial Cast, Aerosol Sci. Technol. 12, 1082–1091.CrossRefGoogle Scholar
  39. 39.
    Sussman, R.G., Cohen, B. S., Lippmann, M.,1991. Asbestos Fiber Deposition in Human Tracheobronchial Cast. I. Experimental, Inhal. Toxicol. 3, 145–160.CrossRefGoogle Scholar
  40. 40.
    Zhou, Y., Cheng, Y.-S.,2005. Particle Deposition in a Cast of Human Tracheobronchial Airways, Aerosol Sci. Technol. 39, 492-500.CrossRefGoogle Scholar
  41. 41.
    International Commission on Radiological Protection (ICRP). 1994. Human Respiratory Tract Model for Radiological Protection. ICRP publication 66. Ann. ICRP 24, Nos 1–3.Google Scholar
  42. 42.
    Frappe, F.N., Rannou, A.,1998. General Solution of the ICRP 66 Model and Its Application to Given Radionuclides, Rad. Protect. Dosim. 79, 29-32.CrossRefGoogle Scholar
  43. 43.
    James, A.C., Stahlhofen, W., Rudolf, G., Egan, M.J., Nixon, W., Gehr, P., Briant, J.K.,1991. The Respiratory Tract Deposition Model Proposed by the ICRP Task Group, Rad Protect. Dosim. 38, 159-165.Google Scholar
  44. 44.
    Birchall, A., Bailey, M. R., James, A. C.,1991. LUDEP: A Lung Dose Evaluation Program, Radiat. Prot. Dosim. 38, 167–174.Google Scholar
  45. 45.
    Hopke, P.K., Jensen, B., Li, C.S., Montassier, N., Wasiolek, P., Cavallo, A.J., Gatsby, K., Sokolow, R.H.,1995. Assessment of the Exposure to and Dose from Radon Decay Products in Normally Occupied Homes, Environ. Sci. Technol. 29:1359-1364.CrossRefGoogle Scholar
  46. 46.
    Weibel, E. R. 1963. Morphometry of the human lung. Berlin: Springer-Verlag.Google Scholar
  47. 47.
    Yeh, H.-C. 1980. Respiratory tract deposition models. LF-72, UC-48. Inhalation Toxicology Research Institute, Albuquerque, NM.Google Scholar
  48. 48.
    Yeh, H. C., Schum, G. M. 1980. Models of human lung airways and their application to inhaled particle deposition. Bul!. Math. Biol. 42, 461-480.Google Scholar
  49. 49.
    Yu, C. P. 1978. Exact analysis of aerosol deposition during steady breathing. Powder Technol. 21, 55-62.CrossRefGoogle Scholar
  50. 50.
    Asgharian, B., Hofmann, W., Bergmann, R. 2001. Particle deposition in a multiple-path model of the human lung. Aerosol Sci. Technol. 34:332-339.Google Scholar
  51. 51.
    Winter-Sorkina, R. de; Cassee, F.R. (2002) From concentration to dose: factors influencing airborne particulate matter deposition in humans and rats. Bilthoven, The Netherlands: National Institute of Public Health and the Environment (RIVM); report no. 650010031/2002. Available: (13 June 2003).Google Scholar
  52. 52.
    Anjilvel, S., Asgharian, B.,1995. A multiple-path model of particle deposition in the rat lung. Fundam. Appl. Toxicol. 28, 41- 50.Google Scholar
  53. 53.
    Asgharian, B., Ménache, M.G., Miller, F.J.,2004. Modeling age-related particle deposition in humans. J Aerosol Med 17:213-224.CrossRefGoogle Scholar
  54. 54.
    Asgharian, B., Price, O.T., Oberdörster, G.,2006. A modeling study of the effect of gravity on airflow distribution and particle deposition in the lung. Inhalation Toxicology 18, 473-481.CrossRefGoogle Scholar
  55. 55.
    Ferron, G.A., Oberdörster, G., Henneberg, R.. 1989. Estimation of the Deposition of Aerosolized Drugs in the Human Respiratory Tract Due to Hygroscopic Growth, J. Aerosol Medicine 2, 271-284.Google Scholar
  56. 56.
    Ferron, G.A.,1977. The size of soluble aerosol particles as a function of the humidity of the air: application to the human respiratory tract, J. Aerosol Sci. 8, 251-267.CrossRefGoogle Scholar
  57. 57.
    Martonen, T.B.,1982. Analytical Model of Hygroscopic Particle Behavior in Human Airways, Bull. Math. Bio. 44, 425-442.Google Scholar
  58. 58.
    Martonen, T.B., Bell, K.A., Phalen, R.F., Wilson, A.F., Ho, A.,1982. Growth Rate Measurements and Deposition Modeling of Hygroscopic Aerosols in Human Tracheobronchial Models, Ann. Occup. Hyg. 26, 93-108.CrossRefGoogle Scholar
  59. 59.
    Egan, M.J., Nixon, W.,1989. On the Relationship between Experimental Data for Total Deposition and Model Calculations - Part II: Application to Fine Particle Deposition in the Respiratory Tract, J. Aerosol Sci. 20, 149-156.CrossRefGoogle Scholar
  60. 60.
    Ferron, G.A., Hayder, B., Kreyling, W.G.,1985. A Method for Approximation of the Relative Humidity in the Upper Human Airways, Bull. Math. Bio. 47, 565-589.Google Scholar
  61. 61.
    Li, W., Hopke, P. K.,1993. Initial size distributions and hygroscopicity of indoor combustion aerosol particles. Aerosol Sci. Technol. 19, 305-316.CrossRefGoogle Scholar
  62. 62.
    Li, W., Montassier, N., Hopke, P.K.,1992. A System to Measure the Hygroscopicity of Aerosol Particles, Aerosol Sci. Technol. 17, 25-35.CrossRefGoogle Scholar
  63. 63.
    Li, W., Hopke, P.K.,1994. Hygroscopicity of Consumer Aerosol Products, J. Aerosol Sci. 25, 1342-1351.Google Scholar
  64. 64.
    Dua, S.K., Hopke, P.K., Raunemaa, T.,1995. Hygroscopic Growth of Consumer Spray Products, Aerosol Sci. Technol, 23, 331-340CrossRefGoogle Scholar
  65. 65.
    Dua, S. K., Hopke, P.K.,1996. Hygroscopic Growth of Assorted Indoor Aerosols, Aerosol Sci. Technol. 24, 151-160.CrossRefGoogle Scholar
  66. 66.
    Dua, S.K., Hopke, P.K., Raunemaa, T.,1999. Hygroscopicity of Diesel Aerosols, Water, Air, Soil Pollution 112, 247-257,CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Chemical & Biomolecular EngineeringClarkson UniversityPotsdamUSA
  2. 2.Center for Air Resources Engineering and ScienceClarkson UniversityPotsdamUSA

Personalised recommendations