Skip to main content

Modeling of Fading and Shadowing

  • Chapter
  • First Online:
Fading and Shadowing in Wireless Systems

Abstract

We presented various models to describe the statistical fluctuations in wireless channels. The models ranged from the simple Rayleigh ones, to cascaded ones, and to complex models such as those based on κμ and ημ distributions. The models were compared in terms of their density functions, distribution functions, and quantitative measures such as error rates and outage probabilities. The shadowing was examined using the traditional lognormal model and approaches based on similarities between lognormal pdf and other density functions. We looked at the simultaneous existence of short-term fading and shadowing using the Nakagami-lognormal density function and approximations to it using the GK model and the Nakagami-N-gamma model. To complete the study of these models for fading, shadowing, and shadowed fading channels, we examined some second-order statistical properties for several models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalo, V., T. Piboongungon, et al. (2005). “Bit-error rate of binary digital modulation schemes in generalized gamma fading channels.” Communications Letters, IEEE 9(2): 139–141.

    Article  Google Scholar 

  • Abdi, A. and M. Kaveh (1998). “K distribution: an appropriate substitute for Rayleigh-lognormal distribution in fading-shadowing wireless channels.” Electronics Letters 34(9): 851–852.

    Article  Google Scholar 

  • Abdi, A. and M. Kaveh (2000). “Comparison of DPSK and MSK bit error rates for K and Rayleigh-lognormal fading distributions.” Communications Letters, IEEE 4(4): 122–124.

    Article  Google Scholar 

  • Abdi, A. and M. Kaveh (2002). “Level crossing rate in terms of the characteristic function: A new approach for calculating the fading rate in diversity systems.” IEEE Transactions on Communications 50(9): 1397–1400.

    Article  Google Scholar 

  • Abdi, A., K. Wills, et al. (2000). Comparison of the level crossing rate and average fade duration of Rayleigh, Rice and Nakagami fading models with mobile channel data. Vehicular Technology Conference, 2000. IEEE VTS-Fall VTC 2000. 52nd. 4: 1850–1857.

    Google Scholar 

  • Abramowitz, M., Segun, I. A., eds. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover Publications.

    MATH  Google Scholar 

  • Abu-Dayya, A. A. and N. C. Beaulieu (1994). “Outage probabilities in the presence of correlated lognormal interferers.” Vehicular Technology, IEEE Transactions on 43(1): 164–173.

    Google Scholar 

  • Adamchik, V. (1995). “The evaluation of integrals of Bessel functions via G-function identities.” Journal of Computational and Applied Mathematics 64(3): 283–290.

    Article  MATH  MathSciNet  Google Scholar 

  • Alouini, M. S. and M. K. Simon (1998). “Generic form for average error probability of binary signals over fading channels.” Electronics Letters 34(10): 949–950.

    Article  Google Scholar 

  • Alouini, M. S. and M. K. Simon (2006). “Performance of generalized selection combining over Weibull fading channels.” Wireless Communications & Mobile Computing 6(8): 1077–1084.

    Article  Google Scholar 

  • Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. presented at the 27th URSI General Assembly, Maastricht, Netherlands.

    Google Scholar 

  • Annamalai, A. and C. Tellambura (2001). “Error rates for Nakagami-m fading multichannel reception of binary and M-ary signals.” Communications, IEEE Transactions on 49(1): 58–68.

    Article  MATH  Google Scholar 

  • Annamalai, A., C. Tellambura, et al. (2001). “Simple and accurate methods for outage analysis in cellular mobile radio systems-a unified approach.” Communications, IEEE Transactions on 49(2): 303–316.

    Article  MATH  Google Scholar 

  • Annamalai, A., C. Tellambura, et al. (2005). “A general method for calculating error probabilities over fading channels.” Communications, IEEE Transactions on 53(5): 841–852.

    Article  Google Scholar 

  • Aulin, T. (1979). “A modified model for the fading signal at the mobile radio channel,” Vehicular Technology, IEEE Transactions on 28(3): 182–203.

    Article  Google Scholar 

  • Bithas, P., N. Sagias, et al. (2006). “On the performance analysis of digital communications over generalized-K fading channels.” Communications Letters, IEEE 10(5): 353–355.

    Article  Google Scholar 

  • Braun, W. R. and Dersch, U. (1991). “A physical mobile radio channel model,” Vehicular Technology, IEEE Transactions on 40(2): 472–482.

    Article  Google Scholar 

  • Bullington, K. (1977). “Radio propagation for vehicular communications,” Vehicular Technology, IEEE Transactions on 26(4): 295–308.

    Article  Google Scholar 

  • Chen, J. I. Z. (2007). “A unified approach to average LCR and AFD performance of SC diversity in generalized fading environments.” Journal of the Franklin Institute-Engineering and Applied Mathematics 344(6): 889–911.

    Article  MATH  Google Scholar 

  • Chizhik, D., G. J. Foschini, M. J. Gans, and R. A. Valenzuela, (2002). “Keyholes, correlations, and capacities of multielement transmit and receive antennas,” Wireless Communications, IEEE Transactions on 1(2):361–368.

    Article  Google Scholar 

  • Clark, R. H. (1968). “A statistical description of mobile radio reception,” BSTJ 47: 957–1000.

    Google Scholar 

  • Clark, J. R. and Karp, S. (1965). ‘Approximations for lognormally fading optical signals,’ Proc. IEEE, 1970, 58, pp. 1964–1965.

    Google Scholar 

  • Cotton, S. L. and W. G. Scanlon (2007). “Higher Order Statistics for Lognormal Small-Scale Fading in Mobile Radio Channels.” Antennas and Wireless Propagation Letters, IEEE 6: 540–543.

    Article  Google Scholar 

  • Coulson, A. J. et al. (1998a). “Improved fading distribution for mobile radio,” Communications, IEE Proceedings on 145(3) 197–202.

    Google Scholar 

  • Coulson, A. J., et al. (1998b). “A Statistical Basis for Lognormal Shadowing Effects in Multipath Fading Channels,” Communications, IEEE Transactions on 46(4): 494–502.

    Google Scholar 

  • Di Renzo, M. Graziosi, F. Santucci, F. (2010). “Channel Capacity Over Generalized Fading Channels: A Novel MGF-Based Approach for Performance Analysis and Design of Wireless Communication Systems.” Vehicular Technology, IEEE Transactions on 59(1): 127–149.

    Google Scholar 

  • de Souza, R. and M. D. Yacoub (2009). Bivariate Nakagami-q (Hoyt) Distribution. Communications, 2009. ICC ‘09. IEEE International Conference on. 1–5.

    Google Scholar 

  • Dong, X. and Beaulieu, N. C. (2001). “Average level crossing rate and average fade duration of selection diversity,” Communications Letters IEEE 5(10): 396–398.

    Article  Google Scholar 

  • Filho, J. C. S. and M. D. Yacoub (2005). “Highly accurate κ & μ approximation to sum of M independent non-identical Ricean variates.” Electronics Letters 41(6): 338–339.

    Article  Google Scholar 

  • Fraile, R., J. Nasreddine, et al. (2007). “Multiple diffraction shadowing simulation model.” Communications Letters, IEEE 11(4): 319–321.

    Article  Google Scholar 

  • Galambos, J. and I. Simonelli (2004). Products of random variables, Marcel Dekker.

    Google Scholar 

  • Gilbert, E. N. (1965). “Energy reception for mobile radio,” BSTJ 48: 2473–2492.

    Google Scholar 

  • Goodman, J. W. (1985). Statistical optics. New York. Wiley.

    Google Scholar 

  • Gradshteyn, I. S., I. M. Ryzhik (2007). Table of integrals, series and products. Oxford, Academic.

    MATH  Google Scholar 

  • Hajri, N., et al. (2009). “A Study on the Statistical Properties of Double Hoyt Fading Channels,” Proceedings of the 6th international conference on Symposium on Wireless Communication Systems, Siena, Italy: 201–205.

    Google Scholar 

  • Hansen, F. and F. I. Meno (1977). “Mobile fading; Rayleigh and lognormal superimposed.” Vehicular Technology, IEEE Transactions on 26(4): 332–335.

    Article  Google Scholar 

  • Haykin, S. S. (2001). Digital communications. New York, Wiley.

    Google Scholar 

  • Jakes, W. C. (1994). Microwave mobile communications. Piscataway, NJ, IEEE Press.

    Google Scholar 

  • Karagiannidis, G. K., N. C. Sagias, et al. (2007). “N*Nakagami: A novel stochastic model for cascaded fading channels.” Communications, IEEE Transactions on 55(8): 1453–1458.

    Article  Google Scholar 

  • Karadimas, P. and S. A. Kotsopoulos (2008). “A Generalized Modified Suzuki Model with Sectored and Inhomogeneous Diffuse Scattering Component.” Wireless Personal Communications 47(4): 449–469.

    Article  Google Scholar 

  • Karadimas, P. and S. A. Kotsopoulos (2010). “A Modified Loo Model with Partially Blocked and Three Dimensional Multipath Scattering: Analysis, Simulation and Validation.” Wireless Personal Communications 53(4): 503–528.

    Article  Google Scholar 

  • Karagiannidis, G. K., T. A. Tsiftsis and R. K. Mallik (2006). “Bounds of Multihop Relayed Communications in Nakagami-m Fading.” IEEE Transactions on Communications 54: 18–22.

    Google Scholar 

  • Karmeshu, J. and R. Agrawal (2007). “On efficacy of Rayleigh-inverse Gaussian distribution over K-distribution for wireless fading channels.” Wireless Communications & Mobile Computing 7(1): 1–7.

    Article  Google Scholar 

  • Kim, Y. Y. and S. Q. Li (1999). “Capturing important statistics of a fading shadowing channel for network performance analysis.” Selected Areas in Communications, IEEE Journal on 17(5): 888–901.

    Article  Google Scholar 

  • Kostic, I. M. (2005). “Analytical approach to performance analysis for channel subject to shadowing and fading.” Communications, IEE Proceedings- 152(6): 821–827.

    Article  Google Scholar 

  • Laourine, A., M. S. Alouini, et al. (2008). “On the capacity of generalized-K fading channels.” Wireless Communications, IEEE Transactions on 7(7): 2441–2445.

    Article  Google Scholar 

  • Laourine, A., et al. (2009). “On the Performance Analysis of Composite Multipath/Shadowing Channels Using the G-Distribution,” Communications, IEEE Transactions on 57(4): 1162–1170.

    Article  Google Scholar 

  • Laourine, A., A. Stephenne, et al. (2007). “Estimating the ergodic capacity of log-normal channels.” Communications Letters, IEEE 11(7): 568–570.

    Article  Google Scholar 

  • Lee, W. C. Y. (1990). “Estimate of channel capacity in Rayleigh fading environment,” Vehicular Technology, IEEE Transactions on 39:187–189

    Article  Google Scholar 

  • Loo, C. (1985). “A statistical model for a land mobile channel,” Vehicular Technology, IEEE Transactions on 34(3): 122–127

    Article  Google Scholar 

  • Malhotra, J., A. K. Sharma, et al. (2009). “On the performance analysis of wireless receiver using generalized-gamma fading model.” Annales Des Telecommunications-Annals of Telecommunications 64(1–2): 147–153.

    Google Scholar 

  • Maple (2011). http://www.maplesoft.com/

  • Mathai, A. M. and H. J. Haubold (2008). Special functions for applied scientists. New York, Springer Science+Business Media.

    Google Scholar 

  • Mathai, A. M. and R. K. Saxena (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Berlin, New York, Springer.

    MATH  Google Scholar 

  • Matlab (2011). http://www.mathworks.com/

  • Mendes, J. R. and M. D. Yacoub (2007). “A General Bivariate Ricean Model and Its Statistics.” Vehicular Technology, IEEE Transactions on 56(2): 404–415.

    Article  Google Scholar 

  • Nadarajah, S. and S. Kotz (2006a). “On the bit-error rate for generalized gamma fading channels.” Communications Letters, IEEE 10(9): 644–645.

    Google Scholar 

  • Nadarajah, S. and S. Kotz (2006b). “On the product and ratio of gamma and Weibull random variables.” Econometric Theory 22(02): 338–344.

    Article  MATH  MathSciNet  Google Scholar 

  • Nakagami, M. (1960). The m-distribution—A general formula of intensity distribution of rapid fading, in Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon.

    Google Scholar 

  • Ohta, M. and Koizumi, T. (1969). ‘Intensity fluctuation of stationary random noise containing an arbitrary signal wave,’ IEEE Proceedings, 1969, 57, pp. 1231–1232.

    Google Scholar 

  • Pahlavan, K. and A. Levesque (1995). Wireless Information Networks. John Wiley and Sons.

    Google Scholar 

  • Pahlavan, K. and Levesque, A. H. (2005). Wireless Information Networks. Hoboken, NJ, John Wiley.

    Book  Google Scholar 

  • Papazafeiropoulos, A. K. and S. A. Kotsopoulos (2011). “The α-λ-μ and α-k-μ small scale general fading distributions: A unified approach.” Wireless Personal Communications 57: 735–751.

    Google Scholar 

  • Papoulis, A. and S. U. Pillai (2002). Probability, random variables, and stochastic processes. Boston, McGraw-Hill.

    Google Scholar 

  • Paris, J. F. (2009). “Nakagami-q (Hoyt) distribution function with applications,” Electron. Lett. 45(4): 210–211.

    Article  MathSciNet  Google Scholar 

  • Paris, J. F. (2009). Nakagami-q (Hoyt) distribution function with applications (Erratum), Electron. Lett. 45(8): 210–211.

    Article  MathSciNet  Google Scholar 

  • Patzold, M. (2002). Mobile Fading Channels. Chichester, U. K., John Wiley & Sons, Inc.

    Google Scholar 

  • Patzold, M., U. Killat, et al. (1998). “An extended Suzuki model for land mobile satellite channels and its statistical properties.” Vehicular Technology, IEEE Transactions on 47(2): 617–630.

    Article  Google Scholar 

  • Podolski, H. (1972). “The distribution of a product of n independent random variables with generalized gamma distribution.” Demonstratio Math 4(2): 119–123.

    MATH  MathSciNet  Google Scholar 

  • Prabhu, G. and Shankar, P. M. (2002). “Simulation Of Flat Fading Using MATLAB For Classroom Instruction,” Education, IEEE Transactions on 45(1): 19–25.

    Article  Google Scholar 

  • Proakis, J. G. (2001). Digital communications. Boston, McGraw-Hill.

    Google Scholar 

  • Rappaport, T. S. (2002). Wireless Communications: principles and practice. Upper Saddle River, N.J., Prentice Hall PTR.

    Google Scholar 

  • Rohatgi, V. K. and A. K. M. E. Saleh (2001). An introduction to probability and statistics. New York, Wiley.

    MATH  Google Scholar 

  • Sagias, N. C., et al. (2004). “Channel Capacity and Second-Order Statistics in Weibull Fading,” Communications Letters, IEEE 8(6): 377–379.

    Article  Google Scholar 

  • Sagias, N. C. et al. (2005). “New Results for the Shannon Channel Capacity in generalized fading channels,” Communications Letters, IEEE 9(2): 97–99.

    Article  Google Scholar 

  • Sagias, N. C. and G. S. Tombras (2007). “On the cascaded Weibull fading channel model.” Journal of the Franklin Institute 344(1): 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  • Salo, J., H. M. El-Sallabi, et al. (2006a). “The distribution of the product of independent Rayleigh random variables.” Antennas and Propagation, IEEE Transactions on 54(2): 639–643.

    Article  MathSciNet  Google Scholar 

  • Salo, J., H. M. El-Sallabi, et al. (2006b). “Statistical analysis of the multiple scattering radio channel.” Antennas and Propagation, IEEE Transactions on 54(11): 3114–3124.

    Google Scholar 

  • Shankar, P. (2002a). Introduction to wireless systems, Wiley New York.

    Google Scholar 

  • Shankar, P. (2002b). “Ultrasonic tissue characterization using a generalized Nakagami model.” Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on 48(6): 1716–1720.

    Article  Google Scholar 

  • Shankar, P. M. (2004). “Error rates in generalized shadowed fading channels.” Wireless Personal Communications 28(3): 233–238.

    Article  Google Scholar 

  • Shankar, P. M. (2005). “Outage probabilities in shadowed fading channels using a compound statistical model.” Communications, IEE Proceedings on 152(6): 828–832.

    Article  Google Scholar 

  • Shankar, P. M. and C. Gentile (2010). Statistical Analysis of Short Term Fading and Shadowing in Ultra-Wideband Systems. Communications (ICC), 2010. IEEE International Conference on. 1–6.

    Google Scholar 

  • Shankar, P. M. (2010a). “Statistical Models for Fading and Shadowed Fading Channels in Wireless Systems: A Pedagogical Perspective,” Wireless Personal Communications. DOI: 10.1007/s11277-010-9938-2.

    Google Scholar 

  • Shankar, P. M. (2010b). “A Nakagami-N-gamma Model for Shadowed Fading Channels,” WIRE DOI: 10.1007/s11277-010-0211-5.

    Google Scholar 

  • Shankar, P. M. (2011). “Maximal ratio combining in independent identically distributed N∗Nakagami fading channels,” Communications, IET Proceedings on 5(3): 320–326.

    Article  Google Scholar 

  • Shankar, P. M. (2011). “Performance of N*Nakagami cascaded fading channels in dual selection combining diversity,” IWCMC 2011, July 2011.

    Google Scholar 

  • Shepherd, N. H. (1977). “Radio wave loss deviation and shadow loss at 900 MHZ,” Vehicular Technology, IEEE Transactions on 26(4) 309–313.

    Article  Google Scholar 

  • Shin, H. and J. H. Lee (2004). “Performance analysis of space-time block codes over keyhole Nakagami-m fading channels,” Vehicular Technology, IEEE Transactions on 53(2): 351–362.

    Article  Google Scholar 

  • Simon, M. K. and M.-S. Alouini (2005). Digital communication over fading channels. Hoboken, N.J., Wiley-Interscience.

    Google Scholar 

  • Sklar, B. (2001). Digital communications: fundamentals and applications. Upper Saddle River, N.J., Prentice-Hall PTR.

    Google Scholar 

  • Springer, M. and W. Thompson (1966). “The distribution of products of independent random variables.” SIAM Journal on Applied Mathematics 14(3): 511–526.

    Article  MATH  MathSciNet  Google Scholar 

  • Springer, M. and W. Thompson (1970). “The distribution of products of beta, gamma and Gaussian random variables.” SIAM Journal on Applied Mathematics 18(4): 721–737.

    Article  MATH  MathSciNet  Google Scholar 

  • Steele, R. and L. Hanzó (1999). Mobile radio communications: second and third generation cellular and WATM systems. Chichester, England; New York, John Wiley & Sons, Inc.

    Google Scholar 

  • Stein, S. (1987). “Fading channel issues in system engineering.” Selected Areas in Communications, IEEE Journal on 5(2): 68–89.

    Article  Google Scholar 

  • Stuber, G. L. (2002). Principles of mobile communication. New York, Kluwer Academic.

    Google Scholar 

  • Suzuki, H. (1977). “A statistical model for urban radio propagation”, Communications, IEEE Transactions on 25:673–680.

    Article  Google Scholar 

  • Talha, B. and Patzold, M. (2007). “On the statistical properties of double Rice channels,” Proc. 10th International Symposium on Wireless Personal Multimedia Communications, WPMC 2007, Jaipur, India, pp. 517–522.

    Google Scholar 

  • Tellambura, C. and A. Annamalai (1999). “An unified numerical approach for computing the outage probability for mobile radio systems.” Communications Letters, IEEE 3(4): 97–99.

    Article  Google Scholar 

  • Tjhung, T. T. and C. C. Chai (1999). “Fade statistics in Nakagami-lognormal channels.” Communications, IEEE Transactions on 47(12): 1769–1772.

    Article  Google Scholar 

  • Trigui, I., A. Laourine, et al. (2009). On the Performance of Cascaded Generalized K Fading Channels. Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. 1–5.

    Google Scholar 

  • Uysal, M. (2005). “Maximum achievable diversity order for cascaded Rayleigh fading channels.” Electronics Letters 41(23): 1289–1290.

    Article  Google Scholar 

  • Vaughn, R. A., and J. B. Andersen (2003). Channels, propagation and Antennas for Mobile Communications. Herts, U. K., IEE.

    Book  Google Scholar 

  • Wolfram (2011). http://functions.wolfram.com/,WolframResearch,Inc.

  • Wongtrairat, W. et al. (2008). “Performance of M-PSK Modulation in Double Rician Fading Channels with MRC Diversity,” 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2008. ECTI-CON 2008, Volume: 1: 321–324.

    Google Scholar 

  • Wongtrairat, W. and P. Supnithi (2009). “Performance of Digital Modulation in Double Nakagami-m Fading Channels with MRC Diversity.” Communications, IEICE Transactions on E92b(2): 559–566.

    Google Scholar 

  • Yacoub, M. D. (2000). “Fading distributions and co-channel interference in wireless systems.” Antennas and Propagation, IEEE Magazine 42(1): 150–159.

    Article  Google Scholar 

  • Yacoub, M. D. (2007a). “The alpha-mu distribution: A physical fading model for the Stacy distribution.” Vehicular Technology, IEEE Transactions on 56(1): 27–34.

    Article  Google Scholar 

  • Yacoub, M. D. (2007b). “The kappa-mu distribution and the eta-mu distribution” Antennas and Propagation, IEEE Magazine 49(1): 68–81.

    Google Scholar 

  • Yacoub, M. D. et al. (1999). “On higher order statistics of the Nakagami-m distribution.” Vehicular Technology, IEEE Transactions on 48(3): 790–794.

    Article  Google Scholar 

  • Yacoub, M. D. et al. (2001). “Level crossing rate and average fade duration for pure selection and threshold selection diversity-combining systems.” International Journal of Communication Systems 14(10): 897–907.

    Article  MATH  Google Scholar 

  • Yacoub, M. D., J. E. Vargas B, et al. (1998). On the statistics of the Nakagami-m signal. Telecommunications Symposium, 1998. ITS ‘98 Proceedings. SBT/IEEE International. 2: 377–382.

    Google Scholar 

  • Yilmaz, F. and M. S. Alouini (2009). Product of the Powers of Generalized Nakagami-m Variates and Performance of Cascaded Fading Channels. Global Telecommunications Conference, 2009. GLOBECOM 2009. IEEE. 1–5.

    Google Scholar 

  • Yuan, L., Z. Jian, et al. (2008). Simulation of Doubly-Selective Compound K Fading Channels for Mobile-to-Mobile Communications. Wireless Communications and Networking Conference, 2008. WCNC 2008. IEEE. 1–5.

    Google Scholar 

  • Zlatanov, N. et al. (2008). “Level crossing rate and average fade duration of the double Nakakagmi-m random process and its applications to MIMO keyhole fading channels.” Communications Letters, IEEE 12(11): 1–3.

    Google Scholar 

  • Zogas, D. and Karagiannidis, G. K. (2005). “Infinite-Series Representations Associated With the Bivariate Rician Distribution and Their Applications,” Communications, IEEE Transactions on 53(11): 1790–1794.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohana Shankar .

Appendix

Appendix

We have seen the flexibility offered through the use of the Meijer G-functions in expressing the density functions, distribution functions, error rates, and outage probabilities. They will also be used extensively in Chaps. 5 and 6 as well. Even though they were introduced in Chap. 2, their properties and functionalities which make them very versatile in the study of communication systems were not discussed. In this section, we will provide an overview of the definition, properties, and characteristics of these functions (Mathai and Saxena 1973; Gradshteyn and Ryzhik 2007; Wolfram 2011). We will also examine the relationship among functions commonly encountered in communications such as the incomplete gamma functions, hypergeometric functions, Bessel functions, error functions, complementary error functions, etc. and the MeijerG functions. Furthermore, closed form expressions for the error rates in cascaded Nakagami channels will be given in terms of Meijer G-functions.

Most of the software packages such as Maple (Maple 2011), Mathematica (Wolfram 2011), and Matlab (Matlab 2011) provide computations involving Meijer G-functions. Mathematica also provides an excellent resource for understanding the properties of these functions. Additionally, Maple can provide a means to understand the relationships among Meijer G-functions and other functions.

The Meijer G-function G(x) is defined as (Gradshteyn and Ryzhik 2007)

$$ \begin{array}{lll}G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll}{{a_1}, \ldots, {a_n}, \ldots, {a_p}} \\{{b_1}, \ldots, {b_m}, \ldots, {b_q}}\end{array}}\right.} \right) = G_{p,q}^{m,n}\left(x\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.\right) \\= G_{p,q}^{m,n}(x) = G(x) \\= \frac{1}{{2\pi j}}\int {\frac{{\prod\nolimits_{i = 1}^m {\Gamma ({b_i} - s)} \prod\nolimits_{i = 0}^n {\Gamma (1 - {a_i} + s)} }}{{\prod\nolimits_{i = m + 1}^q {\Gamma (1 - {b_i} + s)} \prod\nolimits_{i = n + 1}^p {\Gamma ({a_i} - s)} }}} {x^s}{{d}}s.\end{array}$$
(4.254)

In most of the computational packages, the G(x) function is expressed as (Maple 2011)

$$ \begin{array}{lll}G_{p,q}^{m,n}\left( {x\left|{\begin{array}{lll} {{a_1}, \ldots, {a_n}, \ldots, {a_p}}\\{{b_1}, \ldots, {b_m}, \ldots, {b_q}} \\\end{array}} \right.} \right) ={{Meijer}}\,{{G}}\left(\left[\underbrace {\left[\underbrace{\begin{array}{lll} {{a_1},} & {{a_2,} \ldots,} & {{a_n}}\end{array}}_{n\;{{terms}}}\right],\left[\underbrace{\begin{array}{lll} {{a_{n + 1},}} & {{a_{n + 2},} \ldots,} & {{a_p}}\end{array}}_{(p -n)\;{{terms}}}\right]}_{p\;{{terms}}}\right],{\left[\underbrace{\left[\underbrace {\begin{array}{lll} {{b_1},} & {{b_2,}\ldots,} & {{b_m}}\end{array}}_{m\;{{terms}}}\right],\left[\underbrace{\begin{array}{lll} {{b_{m + 1,}}} & {{b_{m + 2},} \ldots,} & {{b_q}}\end{array}}_{(q -m)\;{{terms}}}\right]_{q\;{{terms}}}}\right],\, }x\right).\end{array}$$
(4.255)

A few properties of Meijer G-functions (Mathai and Saxena 1973; Gradshteyn and Ryzhik 2007; Wolfram 2011)

  1. (a)

    Multiplication G(w) with w k:

$$ {w^k}G_{pq}^{mn}\left( {w\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right) = G_{pq}^{mn}\left( {w\left| {\begin{array}{lll} {{a_p} + k} \\{{b_q} + k}\end{array}} \right.} \right). $$
(4.256)
  1. (b)

    Inversion of the argument

$$ G_{pq}^{mn}\left( {\frac{1}{w}\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right) = G_{qp}^{nm}\left( {w\left| {\begin{array}{lll} {1 - {b_q}} \\{1 - {a_p}}\end{array}} \right.} \right). $$
(4.257)
  1. (c)

    Transformations

$$ \begin{array}{lll} G_{p,q}^{m,n}\left( {z\left| {\begin{array}{lll} {{a_1}, \ldots, {a_n}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_n}, \ldots, {b_{q - 1}},{a_1}}\end{array}} \right.} \right) = \ \ G_{p - 1,q - 1}^{m,n - 1}\\\times\left( {z\left| {\begin{array}{lll} {{a_2}, \ldots, {a_n}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_n}, \ldots, {b_{q - 1}}}\end{array}} \right.} \right),\quad n,p,q \geqslant 1,\end{array}$$
(4.258)
$$ \begin{array}{lll}G_{p + 1,q + 1}^{m + 1,n}\left( {z\left| {\begin{array}{lll} {{a_1}, \ldots, {a_n}, \ldots, {a_p},1 - r} \\{0,{b_1},{b_2}, \ldots, {b_n}, \ldots, {b_q}}\end{array}} \right.} \right) = \ \ {( - 1)^r}G_{p + 1,q + 1}^{m,n + 1}\\\times\left( {z\left| {\begin{array}{lll} {1 - r,{a_1}, \ldots, {a_n}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_n}, \ldots, {b_q},1}\end{array}} \right.} \right),\quad r = 0,1,2, \ldots \,.\end{array}$$
(4.259)
  1. (d)

    Differentiation

$$ \begin{array}{lll}\frac{{\partial G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right)}}{{\partial x}} = \frac{1}{x}G_{p + 1,q + 1}^{m,n + 1}\left( {x\left| {\begin{array}{lll} {0,{a_1},{a_2}, \ldots, {a_n},{a_{n + 1}}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_m},1,{b_{m + 1}}, \ldots, {b_q}}\end{array}} \right.} \right) = G_{p+1,q + 1}^{m,n + 1}\left( {x\left| {\begin{array}{lll} { - 1,({a_1} - 1),({a_2} - 1), \ldots, ({a_n} - 1),({a_{n + 1}} - 1), \ldots, ({a_p} - 1)} \\{({b_1} - 1),({b_2} - 1), \ldots, ({b_m} - 1),0,({b_{m + 1}} - 1), \ldots, ({b_q} - 1)}\end{array}} \right.} \right),\end{array}$$
(4.260)
$$\begin{array}{lll} \frac{{\partial G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right)}}{{\partial x}} = ({a_1} - 1)G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {{a_1},{a_2}, \ldots, {a_n},{a_{n + 1}}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_m},{b_{m + 1}}, \ldots, {b_q}}\end{array}} \right.} \right) + G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {({a_1} - 1),{a_2}, \ldots, {a_n},{a_{n + 1}}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_m},{b_{m + 1}}, \ldots, {b_q}}\end{array}} \right.} \right),\end{array}$$
(4.261)
$$ \frac{{\partial \left\{ {{x^\alpha }G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right)} \right\}}}{{\partial x}} = {x^{\alpha - 1}}G_{p+1,q + 1}^{m,n + 1}\left( {x\left| {\begin{array}{lll} { - \alpha, {a_1},{a_2}, \ldots, {a_n},{a_{n + 1}}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_m},(1 - \alpha ),{b_{m + 1}}, \ldots, {b_q}}\end{array}} \right.} \right), $$
(4.262)
$$ \frac{{{\partial^\nu }G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right)}}{{\partial {x^\nu }}} = \frac{1}{{{x^\nu }}}G_{p+1,q + 1}^{m,n + 1}\left( {x\left| {\begin{array}{lll} {0,{a_1},{a_2}, \ldots, {a_n},{a_{n + 1}}, \ldots, {a_p}} \\{{b_1},{b_2}, \ldots, {b_m},\nu, {b_{m + 1}}, \ldots, {b_q}}\end{array}} \right.} \right). $$
(4.263)
  1. (e)

    Integration

$$ \int {{x^{\beta - 1}}} G_{p,q}^{m,n}\left( {ax\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right){{d}}x = {x^\beta }G_{p + 1,q + 1}^{m,n + 1}\left( {ax\left| {\begin{array}{lll} {(1 - \beta ),{a_p}} \\{{b_q}, - \beta }\end{array}} \right.} \right), $$
(4.264)
$$ \int {G_{p,q}^{m,n}\left( {x\left| {\begin{array}{lll} {{a_p}} \\{{b_q}}\end{array}} \right.} \right)} \,{{d}}x = G_{p + 1,q + 1}^{m,n + 1}\left( {x\left| {\begin{array}{lll} {1,({a_p} + 1)} \\{({b_q} + 1),0}\end{array}} \right.} \right), $$
(4.265)
$$ \begin{array}{lll}\int_0^\infty {G_{p,q}^{m,n}} \left( {\lambda x\left| {\begin{array}{lll} {{a_1}, \ldots, {a_n}, \ldots, {a_p}} \\{{b_1}, \ldots, {b_m}, \ldots, {b_p}}\end{array}} \right.} \right)G_{u,v}^{r,s}\left( {\beta x\left| {\begin{array}{lll} {{c_1}, \ldots, {c_s}, \ldots, {c_u}} \\{{d_1}, \ldots, {d_r}, \ldots, {d_v}}\end{array}} \right.} \right){{d}}x = \frac{1}{\lambda }G_{q + u,p + v}^{n + r,m + s}\left( {\frac{\beta }{\lambda }\left| {\begin{array}{lll} { - {b_1}, \ldots, - {b_m},{c_1}, \ldots, {c_s}, \ldots, {c_u}, - {b_{m + 1}}, \ldots, - {b_q}} \\{ - {a_1}, \ldots, - {a_n},{d_1}, \ldots, {d_r}, \ldots, {d_v}, - {a_{n + 1}}, \ldots, - {a_p}}\end{array}} \right.} \right).\end{array} $$
(4.266)

Relationships of Meijer G-functions to other functions

  1. 1.

    Exponential functions

$$ \frac{1}{a}\exp \left( { - \frac{x}{a}} \right) = \frac{1}{a}G_{0,1}^{1,0}\left( {\frac{x}{a}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right) = \left( {\frac{x}{a}} \right)\frac{1}{x}G_{0,1}^{1,0}\left( {\frac{x}{a}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right) = \frac{1}{x}G_{0,1}^{1,0}\left( {\frac{x}{a}\left| {\begin{array}{lll} - \\1\end{array}} \right.} \right). $$
(4.267)

To arrive at the result on the far right hand side of (4.267), we have made use of the identity in (4.256).

$$ \exp \left( { - \frac{x}{a}} \right) = G_{0,1}^{1,0}\left( {\frac{x}{a}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right), $$
(4.268)
$$ \exp \left( {\frac{x}{a}} \right) = G_{0,1}^{1,0}\left( { - \frac{x}{a}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right), $$
(4.269)
$$ 1 - \exp \left( { - \frac{x}{a}} \right) = 1 - G_{0,1}^{1,0}\left( {\frac{x}{a}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right) = G_{1,2}^{1,1}\left( {\frac{x}{a}\left| {\begin{array}{lll} 1 \\{1,0}\end{array}} \right.} \right). $$
(4.270)
  1. 2.

    Gaussian function

$$ \frac{1}{{\sqrt {{2\pi {\sigma^2}}} }}{{{e}}^{ - ({x^2}/2{\sigma^2})}} = \frac{1}{{\sqrt {{2\pi {\sigma^2}}} }}G_{0,1}^{1,0}\left( {\frac{{{x^2}}}{{2{\sigma^2}}}\left| {\begin{array}{lll} {} \\0\end{array}} \right.} \right). $$
(4.271)
  1. 3.

    Gaussian integrals

$$ \int_{ - \infty }^y {\frac{1}{{\sqrt {{2\pi }} }}} \exp \left( { - \frac{{{x^2}}}{2}} \right)\,{{d}}x = \frac{1}{2} + \frac{1}{{2\sqrt {\pi } }}G_{1,2}^{1,1}\left( {\frac{1}{2}{y^2}\left| {\begin{array}{lll} 1 \\{\frac{1}{2},0}\end{array}} \right.} \right),\quad y < 0, $$
(4.272)
$$ \int_{ - \infty }^{ - y} {\frac{1}{{\sqrt {{2\pi }} }}} \exp \left( { - \frac{{{x^2}}}{2}} \right)\,{{d}}x = \frac{1}{2} - \frac{1}{{2\sqrt {\pi } }}G_{1,2}^{1,1}\left( {\frac{1}{2}{y^2}\left| {\begin{array}{lll} 1 \\{\frac{1}{2},0}\end{array}} \right.} \right),\quad y < 0. $$
(4.273)
  1. 4.

    Complementary error functions (for bit error rate calculations)

$$ {{erfc}}\sqrt {x} = 1 - \frac{1}{{\sqrt {\pi } }}G_{1,2}^{1,1}\left( {x\left| {\begin{array}{lll} 1 \\{\frac{1}{2},0}\end{array}} \right.} \right)=\frac{1}{\sqrt\pi}G_{1,2}^{2,0}\left(x\left|\begin{array}{lll} 1 \\{\frac{1}{2},0}\end{array}\right.\right),$$
(4.274)
$$ \frac{1}{2}{{erfc}}\sqrt {x} = \frac{1}{2}\left\{ {1 - \frac{1}{{\sqrt {\pi } }}G_{1,2}^{1,1}\left( {x\left| {\begin{array}{lll} 1 \\{\frac{1}{2},0}\end{array}} \right.} \right)} \right\}, $$
(4.275)
$$ \frac{{d}}{{{{d}}x}}\left( {\frac{1}{2}{{erfc}}\sqrt {x} } \right) = - \frac{1}{2}\frac{1}{{\sqrt {{\pi x}} }}{{{e}}^{ - x}} = - \frac{1}{2}\left( {\frac{1}{{\sqrt {{\pi x}} }}} \right)G_{0,1}^{1,0}(x|0) = - \left( {\frac{1}{{2\sqrt {\pi } }}} \right)G_{0,1}^{1,0}\left( {x\left| { - \frac{1}{2}} \right.} \right), $$
(4.276)
$$ Q(\sqrt {{2z}} ) = \frac{1}{2}{{erfc(}}\sqrt {z} {)} = \frac{1}{2}\left\{ {1 - \frac{1}{{\sqrt {\pi } }}G_{1,2}^{1,1}\left( {x\left| {\begin{array}{lll} 1 \\{\frac{1}{2},0}\end{array}} \right.} \right)} \right\}. $$
(4.277)
  1. 5.

    Natural logarithm

$$ \ln \,(x) = (x - 1)G_{2,2}^{1,2}\left( {(x - 1)\left| {\begin{array}{lll} {0,0} \\{0, - 1}\end{array}} \right.} \right) = G_{2,2}^{1,2}\left( {(x - 1)\left| {\begin{array}{lll} {1,1} \\{1,0}\end{array}} \right.} \right), $$
(4.278)
$$ \ln \,(1 + x) = xG_{2,2}^{1,2}\left( {x\left| {\begin{array}{lll} {0,0} \\{0, - 1}\end{array}} \right.} \right) = G_{2,2}^{1,2}\left( {x\left| {\begin{array}{lll} {1,1} \\{1,0}\end{array}} \right.} \right). $$
(4.279)
  1. 6.

    Bessel functions

$$ {K_{m - c}}\left( {n\frac{x}{Z}} \right) = \frac{1}{2}G_{0,2}^{2,0}\left( {\frac{{{n^2}}}{4}{{\left( {\frac{x}{Z}} \right)}^2}\left| {\begin{array}{lll} - \\{\frac{1}{2}(m - c),\frac{1}{2}(c - m)}\end{array}} \right.} \right), $$
(4.280)
$$ {K_{m - c}}\left( {n\sqrt {{\frac{{xmc}}{Z}}} } \right) = \frac{1}{2}G_{0,2}^{2,0}\left( {\frac{{{n^2}}}{4}\frac{{xmc}}{Z}\left| {\begin{array}{lll} - \\{\frac{1}{2}(m - c),\frac{1}{2}(c - m)}\end{array}} \right.} \right), $$
(4.281)
$$ {J_n}(ax) = G_{0,2}^{1,0}\left( {\frac{1}{4}{a^2}{x^2}\left| {\begin{array}{lll} - \\{\frac{n}{2}, - \frac{n}{2}}\end{array}} \right.} \right), $$
(4.282)
$$ {I_n}(ax) = \frac{1}{{{{( - 1)}^{n/2}}}}G_{0,2}^{1,0}\left( { - \frac{1}{4}{a^2}{x^2}\left| {\begin{array}{lll} - \\{\frac{n}{2}, - \frac{n}{2}}\end{array}} \right.} \right),\quad n \ne 0, $$
(4.283)
$$ {I_0}(ax) = G_{0,2}^{1,0}\left( { - \frac{1}{4}{a^2}{x^2}\left| {\begin{array}{lll} - \\{0,0}\end{array}} \right.} \right). $$
(4.284)
  1. 7.

    Short-term fading faded channels

Probability density function of the amplitude (a) in a Nakagami faded channel is

$$ f(a) = 2{\left( {\frac{m}{{{Z_0}}}} \right)^m}\frac{{{a^{2m - 1}}}}{{\Gamma (m)}}\exp \left( { - \frac{m}{{{Z_0}}}a} \right) = \frac{2}{{a\Gamma (m)}}G_{0,1}^{1,0}\left( {\frac{m}{{{Z_0}}}{a^2}\left| {\begin{array}{lll} - \\m\end{array}} \right.} \right). $$
(4.285)

Probability density function of the SNR in a Nakagami channel is

$$ f(x) = {\left( {\frac{m}{{{Z_0}}}} \right)^m}\frac{{{x^{m - 1}}}}{{\Gamma (m)}}\exp \left( { - m\frac{x}{{{Z_0}}}} \right) = {\left( {\frac{m}{{{Z_0}}}} \right)^m}\frac{{{x^{m - 1}}}}{{\Gamma (m)}}G_{0,1}^{1,0}\left( {m\frac{x}{{{Z_0}}}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right) = \frac{{{x^{ - 1}}}}{{\Gamma (m)}}{\left( {\frac{{mx}}{{{Z_0}}}} \right)^m}G_{0,1}^{1,0}\left( {m\frac{x}{{{Z_0}}}\left| {\begin{array}{lll} - \\0\end{array}} \right.} \right) = \frac{1}{{\Gamma (m)x}}G_{0,1}^{1,0}\left( {m\frac{x}{{{Z_0}}}\left| {\begin{array}{lll} - \\m\end{array}} \right.} \right). $$
(4.286)

To arrive at the result on the far right hand side of (4.286), we have made use of the identity in (4.256). The average SNR is Z 0.

The cumulative distribution function (CDF) of the SNR can take any one of the several forms expressed below. Note that γ(.,.) is the lower incomplete gamma function and Γ(.,.) is the upper incomplete gamma function (Gradshteyn and Ryzhik 2007). The hypergeometric function is represented by p F q (.).

$$ \int_0^x {{{\left( {\frac{m}{{{Z_0}}}} \right)}^m}\frac{{{y^{m - 1}}}}{{\Gamma (m)}}\exp \left( { - m\frac{y}{{{Z_0}}}} \right)} \,{{d}}y = \left\{ \begin{array}{lll}\displaystyle\frac{{\gamma(m,(mx/{Z_0}))}}{{\Gamma (m)}} = 1 - \frac{{\Gamma(m,(mx/{Z_0}))}}{{\Gamma (m)}}. \hfill \\\displaystyle\frac{{{{(mx/{Z_0})}^m}}}{{\Gamma (m)}}G_{1,2}^{1,1}\left( {\frac{{mx}}{{{Z_0}}}\left| {\begin{array}{lll} {1 - m} \\{0, - m}\end{array}} \right.} \right) = \frac{1}{{\Gamma (m)}}G_{1,2}^{1,1}\left( {\frac{{mx}}{{{Z_0}}}\left| {\begin{array}{lll} 1 \\{m,0}\end{array}} \right.} \right). \hfill \\1 - \displaystyle\frac{1}{{\Gamma (m)}}G_{1,2}^{2,0}\left( {\frac{m}{{{Z_0}}}x\left| {\begin{array}{lll} 1 \\{0,m}\end{array}} \right.} \right). \hfill \\\displaystyle\frac{1}{{m\Gamma (m)}}{\left( {\frac{{mx}}{{{Z_0}}}} \right)^m}{}_1{F_1}\left( {[m],[1 + m], - \frac{{mx}}{{{Z_0}}}} \right). \end{array}\right.$$
(4.287)

We can also express the density function of the SNR in a generalized gamma fading channel as

$$ f(z) = \frac{{\lambda {z^{\lambda m - 1}}}}{{\Gamma (m){\beta^m}}}\exp \left( { - \frac{{{z^\lambda }}}{\beta }} \right) = \frac{\lambda }{{\Gamma (m)z}}G_{0,1}^{1,0}\left( {\frac{{{z^\lambda }}}{\beta }\left| {\begin{array}{lll} - \\m\end{array}} \right.} \right). $$
(4.288)

The density function of the SNR in a Weibull fading channel can be obtained from (4.288) by putting m = 1. The probability density function of the SNR in a Rician faded channel (K 0 is the Rician factor defined earlier) can be expressed as the product of two Meijer G-functions as

$$ \begin{array}{lll} f(z) = \displaystyle\frac{{{K_0} + 1}}{{{Z_{{Ri}}}}}\exp \left[ { - {K_0} - ({K_0} + 1)\frac{z}{{{Z_{{Ri}}}}}} \right]{I_0}\left( {2\sqrt {{\frac{{{K_0}({K_0} + 1)}}{{{Z_{{Ri}}}}}z}} } \right) \\= \left( {\displaystyle\frac{{{K_0} + 1}}{{{Z_{{Ri}}}}}} \right)G_{0,1}^{1,0}\left( {\left[ {{K_0} + ({K_0} + 1)\displaystyle\frac{z}{{{Z_{{Ri}}}}}} \right]\left| {\begin{array}{lll}- \\0\end{array}} \right.} \right) G_{0,2}^{1,0}\left( \left[ { - {K_0}({K_0} + 1)\displaystyle\frac{z}{{{Z_{{Ri}}}}}} \right]\left| {\begin{array}{lll} - \\{0,0} \end{array}} \right. \right).\end{array} $$
(4.289)
  1. 8.

    Shadowed fading channel: gamma–gamma pdf or generalized K pdf

$$ f(z) = \int_0^\infty {{{\left( {\frac{m}{y}} \right)}^m}\frac{{{z^{m - 1}}}}{{\Gamma (m)}}\exp \left( { - m\frac{z}{y}} \right)} \frac{{{y^{c - 1}}}}{{{b^c}\Gamma (c)}}\exp \left( { - \frac{y}{b}} \right)\,{{d}}y = \int_0^\infty {{{\left( {\frac{m}{y}} \right)}^m}\frac{{{z^{m - 1}}}}{{\Gamma (m)}}\exp \left( { - m\frac{z}{y}} \right)} \frac{{{y^{c - 1}}}}{{{{({Z_0}/c)}^c}\Gamma (c)}}\exp \left( { - \frac{y}{{({Z_0}/c)}}} \right)\,{{d}}y. $$
(4.290)

In terms of Meijer G-functions, (4.290) becomes

$$ f(z) = \int_0^\infty {\frac{1}{{z\Gamma (m)}}G_{0,1}^{1,0}\left( {\frac{{mz}}{y}\left| {\begin{array}{lll} - \\m\end{array}} \right.} \right)} \frac{1}{{y\Gamma (c)}}G_{0,1}^{1,0}\left( {\frac{y}{{({Z_0}/c)}}\left| {\begin{array}{lll} - \\c\end{array}} \right.} \right)\,{{d}}y. $$
(4.291)

The Meijer G-functions in (4.291) can be rewritten using the identities in (4.256) and (4.257) as

$$ \frac{1}{{z\Gamma (m)}}G_{0,1}^{1,0}\left( {\frac{{mz}}{y}\left| {\begin{array}{lll} - \\m\end{array}} \right.} \right) = \frac{1}{{z\Gamma (m)}}G_{1,0}^{0,1}\left( {\frac{y}{{mx}}\left| {\begin{array}{lll} {1 - m} \\-\end{array}} \right.} \right), $$
(4.292)
$$ \frac{1}{{y\Gamma (c)}}G_{0,1}^{1,0}\left( {\frac{{cy}}{{{Z_0}}}\left| {\begin{array}{lll} - \\c\end{array}} \right.} \right) = \left( {\frac{c}{{{Z_0}}}} \right)\frac{1}{{\Gamma (c)}}G_{0,1}^{1,0}\left( {\frac{{cy}}{{{Z_0}}}\left| {\begin{array}{lll} - \\{c - 1}\end{array}} \right.} \right). $$
(4.293)

Equation (4.291) now becomes

$$ f(z) = \int_0^\infty {\frac{1}{{z\Gamma (m)}}G_{1,0}^{0,1}\left( {\frac{y}{{mz}}\left| {\begin{array}{lll} {1 - m} \\-\end{array}} \right.} \right)} \left( {\frac{c}{{{Z_0}}}} \right)\frac{1}{{\Gamma (c)}}G_{0,1}^{1,0}\left( {\frac{{cy}}{{{Z_0}}}\left| {\begin{array}{lll} - \\{c - 1}\end{array}} \right.} \right)\,{{d}}y. $$
(4.294)

Using the integral of the product of Meijer G-function given in (4.266), (4.294) becomes

$$ f(z) = \left( {\frac{1}{{z\Gamma (m)\Gamma (c)}}} \right)(mz)\left( {\frac{c}{{{Z_0}}}} \right)G_{0,2}^{2,0}\left( {\frac{{mc}}{{{Z_0}}}z\left| {\begin{array}{lll} - \\{m - 1,c - 1}\end{array}} \right.} \right). $$
(4.295)

Using the identity in (4.256), (4.295) becomes

$$ f(z) = \frac{1}{{z\Gamma (m)\Gamma (c)}}G_{0,2}^{2,0}\left( {\frac{{mc}}{{{Z_0}}}z\left| {\begin{array}{lll} - \\{m,c}\end{array}} \right.} \right). $$
(4.296)

Using the Table of integrals (Gradshteyn and Ryzhik 2007), (4.290) becomes

$$ f(z) = \frac{2}{{\Gamma (m)\Gamma (c)}}{\left( {\frac{{mc}}{{{Z_0}}}} \right)^{(m + c)/2}}{z^{((m + c)/2) - 1}}{K_{m - c}}\left( {2\sqrt {{\frac{{mcz}}{{{Z_0}}}}} } \right). $$
(4.297)

The right hand side of (4.297) can also be obtained from the conversion from Meijer G-function to Bessel functions in (4.281).

CDF of the SNR in a GK channel

$$ \begin{array}{lll} {\int_0^z {\frac{2}{{\Gamma (m)\Gamma (c)}}{{\left( {\frac{{mc}}{{{Z_0}}}} \right)}^{(m + c)/2}}{y^{((m + c)/2) - 1}}{K_{m - c}}\left( {2\sqrt {{\frac{{mcy}}{{{Z_0}}}}} } \right)\,{{d}}y}} \\= \frac{{\Gamma (m - c)}}{{\Gamma (m)\Gamma (c + 1)}}{{\left( {\frac{{mcz}}{{{Z_0}}}} \right)}^c}{}_1{F_2}\left( {[c],[1 + c,1 - m + c],\frac{{mcz}}{{{Z_0}}}} \right) + \frac{{\Gamma (c - m)}}{{\Gamma (c)\Gamma (m + 1)}}{{\left( {\frac{{mcz}}{{{Z_0}}}} \right)}^m}{}_1{F_2}\left( {[m],[1 + m,1 - c + m],\frac{{mcz}}{{{Z_0}}}} \right) \\= \frac{1}{{\Gamma (m)\Gamma (c)}}G_{1,3}^{2,1}\left( {\frac{{mcz}}{{{Z_0}}}\left| {\begin{array}{lll} 1 \\{m,c,0}\end{array}} \right.} \right).\end{array} $$
(4.298)
  1. 9.

    Cascaded channels

Cascaded gamma pdf (nonidentical but independent) with

$$ f({x_k}) = \frac{1}{{b_k^{{m_k}}\Gamma ({m_k})}}x_k^{{m_k} - 1}\exp \left( { - \frac{{{x_k}}}{{{b_k}}}} \right),\quad k = 1,2, \ldots, N, $$
(4.299)
$$ Z = \prod\limits_{k = 1}^N {{X_k}}, $$
(4.300)
$$ {Z_0} = \prod\limits_{k = 1}^N {{b_k}} {m_k} = \prod\limits_{k = 1}^N {{m_k}} \prod\limits_{k = 1}^N {{b_k}}. $$
(4.301)

The pdf of the cascaded output (SNR) Z

$$ f(z) = \frac{1}{{z\prod\nolimits_{k = 1}^N {\Gamma ({m_k})} }}G_{0,N}^{N,0}\left( {\frac{{z\prod\nolimits_{k = 1}^N {{m_k}} }}{{{Z_0}}}\left| {\begin{array}{lll} - \\{{m_1},{m_2}, \ldots, {m_N}}\end{array}} \right.} \right). $$
(4.302)

CDF of the cascaded output

$$ F(z) = \frac{1}{{\prod\nolimits_{k = 1}^N {\Gamma ({m_k})} }}G_{1,N + 1}^{N,1}\left( {\frac{{z\prod\nolimits_{k = 1}^N {{m_k}} }}{{{Z_0}}}\left| {\begin{array}{lll} 1 \\{{m_1},{m_2}, \ldots, {m_N},0}\end{array}} \right.} \right). $$
(4.303)

For the case of N identical gamma channels,

$$ f(z) = \frac{1}{{z\Gamma {{(m)}^N}}}G_{0,N}^{N,0}\left( {\frac{{{m^N}}}{{{Z_0}}}z\left| {\begin{array}{lll} - \\{m,m, \ldots, m}\end{array}} \right.} \right), $$
(4.304)
$$ F(z) = \frac{1}{{\Gamma {{(m)}^N}}}G_{1,N + 1}^{N,1}\left( {\frac{{{m^N}}}{{{Z_0}}}z\left| {\begin{array}{lll} 1 \\{m,m, \ldots, m,0}\end{array}} \right.} \right). $$
(4.305)
  1. 10.

    Laplace transforms

$$ g(s) = \int_0^\infty {\frac{1}{{z\Gamma {{(m)}^N}}}G_{0,N}^{N,0}\left( {\frac{{{m^N}}}{{{Z_0}}}z\left| {\begin{array}{lll} - \\{m,m, \ldots, m}\end{array}} \right.} \right)\exp ( - sz)} \,{{d}}z = \left( {\frac{{s{Z_0}}}{{{m^N}}}} \right)\frac{1}{{\Gamma {{(m)}^N}}}G_{1,N}^{N,1}\left( {\frac{{{m^N}}}{{s{Z_0}}}\left| {\begin{array}{lll} 2 \\{(m + 1),(m + 1), \ldots, (m + 1)}\end{array}} \right.} \right). $$
(4.306)

Using the multiplication property from (4.256), the Laplace transform becomes

$$ g(s) = \int_0^\infty {\frac{1}{{z\Gamma {{(m)}^N}}}G_{0,N}^{N,0}\left( {\frac{{{m^N}}}{{{Z_0}}}z\left| {\begin{array}{lll} - \\{m,m, \ldots, m}\end{array}} \right.} \right)\exp ( - sz)} \,{{d}}z = \frac{1}{{\Gamma {{(m)}^N}}}G_{1,N}^{N,1}\left( {\frac{{{m^N}}}{{s{Z_0}}}\left| {\begin{array}{lll} 1 \\{m,m, \ldots, m}\end{array}} \right.} \right). $$
(4.307)

For the special case of N = 1 (gamma pdf or Nakagami channel), the Laplace transform simplifies to

$$ g(s) = \int_0^\infty {\frac{1}{{z\Gamma (m)}}G_{0,1}^{1,0}\left( {\frac{m}{{{Z_0}}}z\left| {\begin{array}{lll} - \\m\end{array}} \right.} \right)\exp ( - sz)} \,{{d}}z = \frac{1}{{{{(1 + ({Z_0}/m)s)}^m}}}. $$
(4.308)
  1. 11.

    Bit error rates (Coherent BPSK) for cascaded channels

Using the pdf

$$ \int_0^\infty {\frac{1}{2}{{erfc(}}\sqrt {z} {)}} \frac{1}{{\Gamma {{(m)}^N}z}}G_{0,N}^{N,0}\left( {\frac{{{m^N}z}}{{{Z_0}}}\left| {\begin{array}{lll} - \\{m,m, \ldots, m}\end{array}} \right.} \right){{d}}z = \frac{1}{2} - \frac{1}{{2\sqrt {\pi } \Gamma {{(m)}^N}}}G_{2,N + 1}^{N + 1,1}\left( {\frac{{{m^N}}}{{{Z_0}}}\left| {\begin{array}{lll} {\frac{1}{2},1} \\{0,m,m, \ldots, m}\end{array}} \right.} \right). $$
(4.309)

Using the CDF

$$ \int_0^\infty {\frac{1}{{2\sqrt {{\pi z}} }}\exp ( - z)} \frac{1}{{\Gamma {{(m)}^N}}}G_{1,N + 1}^{N,1}\left( {\frac{{{m^N}z}}{{{Z_0}}}\left| {\begin{array}{lll} 1 \\{m,m, \ldots, m,0}\end{array}} \right.} \right){{d}}z = \frac{1}{{2\sqrt {\pi } \Gamma {{(m)}^N}}}G_{2,N + 1}^{N,2}\left( {\frac{{{m^N}}}{{{Z_0}}}\left| {\begin{array}{lll} {\frac{1}{2},1} \\{m,m, \ldots, m,0}\end{array}} \right.} \right). $$
(4.310)

It can be shown through computation that (4.309) and (4.310) lead to the same error rates. For N = 1 (Nakagami channel, SNR), the bit error rate for coherent BPSK, we have (using the CDF)

$$ \begin{array}{lll}\int_0^\infty {\frac{1}{{2\sqrt {{\pi z}} }}\exp ( - z)} \frac{1}{{\Gamma (m)}}G_{1,2}^{1,1}\left( {\frac{{mz}}{{{Z_0}}}\left| {\begin{array}{lll} 1 \\{m,0}\end{array}} \right.} \right){{d}}z ={ \left( {\displaystyle\frac{1}{{2\sqrt {\pi } }}} \right)\displaystyle\frac{{\Gamma \left(m +({1}/{2})\right)}}{{m\Gamma (m)}}{\left( {\frac{m}{{{Z_0}}}} \right)^m}{}_2{F_1}\left( {\left[ {m,\frac{1}{2} + m} \right],[1 + m], - \frac{m}{{{Z_0}}}} \right) \hfill} = \left( {\displaystyle\frac{1}{{2\sqrt {\pi } }}} \right)\displaystyle\frac{1}{{\Gamma (m)}}G_{2,2}^{1,2}\left( {\frac{m}{{{Z_0}}}\left| {\begin{array}{lll} {1,\displaystyle\frac{1}{2}} \\{m,0}\end{array}} \right.} \right) \end{array}$$
(4.311)

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shankar, P.M. (2012). Modeling of Fading and Shadowing. In: Fading and Shadowing in Wireless Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0367-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0367-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0366-1

  • Online ISBN: 978-1-4614-0367-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics