Some Colloidal Routes to Synthesize Metal Nanoparticle-Based Catalysts

  • Szilvia Papp
  • László Kőrösi
  • Rita Patakfalvi
  • Imre Dékány


Inorganic colloids and especially metal nanoparticles (NPs) have been in the focus of interest for a long time. Their valuable characteristics due to their small size, such as their unique electron structure and extremely large specific surface area, open the way for their practical utilization. By virtue of their high activity and selectivity, they have become widely known as novel type catalysts. Various methods are developed for their preparation, from which colloidal chemical routes became more and more widespread. In this study, some colloidal methods for preparation of metal (Pd, Rh, Au, Ag) NPs and NP-based catalysts are presented. The effects of various polymer molecules, clay lamellae, and reducing agents on the kinetic of NPs formation were investigated. The formation of NPs was followed by transmission electron microscopy (TEM), UV–Vis spectroscopy, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS). NPs were also prepared on clay mineral surface. Interlamellar space of clay minerals is capable of stabilizing colloid particles. Influence of the NPs into the original lamellar structures was examined by X-ray diffraction and small-angle X-ray scattering. The surface oxidation state of the particles sitting on the support in the metal-containing catalysts was determined by XPS.


Isothermal Titration Calorimetry Silver Content Apparent Rate Constant Interlamellar Space Surface Fractal Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wilcoxon JP, Williamson RL, Baughman R (1993) Optical properties of gold colloids formed in inverse micelles. J Chem Phys 98:9933–9950CrossRefGoogle Scholar
  2. 2.
    Parsapour F, Kelley DF, Craft S, Wilcoxon JP (1996) Electron transfer dynamics in MoS2 nanoclusters: normal and inverted behavior. J Chem Phys 104:4978–4987CrossRefGoogle Scholar
  3. 3.
    Pocard NL, Alsmeyer DC, McCreery RL, Neenan TX, Callstrom MR (1992) Nanoscale platinum(0) clusters in glassy carbon: synthesis, characterization, and uncommon catalytic activity. J Am Chem Soc 114:769–771CrossRefGoogle Scholar
  4. 4.
    Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188CrossRefGoogle Scholar
  5. 5.
    Chan YNC, Schrock RR, Cohen RE (1992) Synthesis of silver and gold nanoclusters within microphase-separated diblock copolymers. Chem Mater 4:24–27CrossRefGoogle Scholar
  6. 6.
    Zhao M, Sun L, Crooks RM (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120:4877–4878CrossRefGoogle Scholar
  7. 7.
    Bradley JS (1994) In: Schmid G (ed) Clusters and colloids: from theory to applications. VCH, New York, pp 459–536Google Scholar
  8. 8.
    Rampino LD, Nord FF (1941) Preparation of palladium and platinum synthetic high polymer catalysts and the relationship between particle size and rate of hydrogenation. J Am Chem Soc 63:2745–2749CrossRefGoogle Scholar
  9. 9.
    Boutonnet M, Kizling J, Stenius P, Maire G (1982) The preparation of monodisperse colloidal metal particles from microemulsions. Colloids Surf 5:209–225CrossRefGoogle Scholar
  10. 10.
    Wang CC, Chen DH, Huang TC (2001) Synthesis of palladium nanoparticles in water-in-oil microemulsions. Colloids Surf A Physicochem Eng Asp 189:145–154CrossRefGoogle Scholar
  11. 11.
    Nickel U, Castell A, Pöppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16:9087–9091CrossRefGoogle Scholar
  12. 12.
    Zhao MQ, Crooks RM (1999) Intradendrimer exchange of metal nanoparticles. Chem Mater 11(11):3379–3385CrossRefGoogle Scholar
  13. 13.
    Nakao Y, Kaeriyama K (1986) Preparation of noble-metal sols in the presence of surfactants and their properties. J Colloid Interface Sci 110:82–87CrossRefGoogle Scholar
  14. 14.
    Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951CrossRefGoogle Scholar
  15. 15.
    Heard SM, Grieser F, Barraclough CG, Sanders JV (1982) The characterization of Ag sols by electron-microscopy, optical-absorption, and electrophoresis. J Colloid Interface Sci 93:545–555CrossRefGoogle Scholar
  16. 16.
    Hoogsteen W, Fokkink LGJ (1995) Polymer-stabilized Pd sols: kinetics of sol formation and stabilization mechanism. J Colloid Interface Sci 175:12–26CrossRefGoogle Scholar
  17. 17.
    Hirai H, Nakao Y, Toshima N (1979) Preparation of colloid transition-metals in polymers by reduction with alcohols of ethers. J Macromol Sci Chem A 13:727–750CrossRefGoogle Scholar
  18. 18.
    Teranishi T, Miyake M (1998) Size control of palladium nanoparticles and their crystal structures. Chem Mater 10:594–600CrossRefGoogle Scholar
  19. 19.
    Henglein A (1999) Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: optical spectrum, controlled growth, and some chemical reactions. Langmuir 15:6738–6744CrossRefGoogle Scholar
  20. 20.
    Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322CrossRefGoogle Scholar
  21. 21.
    Privman V, Goia DV, Park J, Matijević E (1999) Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors. J Colloid Interface Sci 213:36–45CrossRefGoogle Scholar
  22. 22.
    Ji XH, Song XN, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 129:13939–13948CrossRefGoogle Scholar
  23. 23.
    Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. Chem Mater 9:3083–3095CrossRefGoogle Scholar
  24. 24.
    Leisner T, Rosche C, Wolf S, Granzer F, Woste L (1996) The catalytic role of small coinage-metal clusters in photography. Surf Rev Lett 3(1):1105–1108CrossRefGoogle Scholar
  25. 25.
    Tauschtreml R, Henglein A, Lilie J (1978) Reactivity of silver atoms in aqueous solution, a pulse radiolysis study. Ber Bunsenges Phys Chem 82(12):1335–1343Google Scholar
  26. 26.
    Cai M, Chen J, Zhou J (2004) Reduction and morphology of silver nanoparticles via liquid-liquid method. Appl Surf Sci 226:422–426CrossRefGoogle Scholar
  27. 27.
    Ayyappan S, Gopalan RS, Subbana GN, Rao CNR (1997) Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J Mater Res Soc 12(2):398–401CrossRefGoogle Scholar
  28. 28.
    Busser GW, Ommen JG, Lercher JA (1999) Preparation and characterization of polymer-stabilized rhodium sols. I. Factors affecting particle size. J Phys Chem B 103(10):1651–1659CrossRefGoogle Scholar
  29. 29.
    Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12:909–912CrossRefGoogle Scholar
  30. 30.
    Esumi K, Itakura T, Torigoe K (1994) Preparation of organo palladium sols from palladium complexes in various alcohols. Colloids Surf A 82:111–113CrossRefGoogle Scholar
  31. 31.
    Mie G (1908) Beitrage zur Optik Truber Medien, Speziell Kolloidaler Metallosungen. Ann Phys 25:377–445CrossRefGoogle Scholar
  32. 32.
    Seregina MV, Bronstein LM, Platonova OA, Chernyshov DM, Valetsky PM, Hartmann J, Wenz E, Antonietti M (1997) Preparation of noble-metal colloids in block copolymer micelles and their catalytic properties in hydrogenation. Chem Mater 9:923–931CrossRefGoogle Scholar
  33. 33.
    Antonietti M, Wenz E, Bronstein L, Seregina M (1995) Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv Mater 7:1000–1005CrossRefGoogle Scholar
  34. 34.
    Spatz JP, Sheiko S, Möller M (1996) Ion-stabilized block copolymer micelles: film formation and intermicellar interaction. Macromolecules 29:3220–3226CrossRefGoogle Scholar
  35. 35.
    Saptz JP, Mössmer S, Hartmann C, Möller M, Herzog T, Krieger M, Boyen HG, Ziemann P, Kabius B (2000) Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir 16:407–415CrossRefGoogle Scholar
  36. 36.
    Yoon NM, Yang HS, Hwang YS (1987) Reducing characteristics of potassium triethylborohydride. Bull Korean Chem Soc 8:285–291Google Scholar
  37. 37.
    Mössmer S, Spatz JP, Möller M, Aberle T, Schmidt J, Burchard W (2000) Solution behavior of poly(styrene)-block-poly(2-vinylpyridine) micelles containing gold nanoparticles. Macromolecules 33:4791–4798CrossRefGoogle Scholar
  38. 38.
    D’Aprano A, Donato ID, Pinio F, Liveri VT (1990) Complex formation in aerosol OT reversed micelles between sodium counterion and Kryptofix 221D macrobicyclic ligand. J Solution Chem 19:589–595CrossRefGoogle Scholar
  39. 39.
    Arcoleo V, Cavallaro G, Manna GL, Liveri VT (1995) Calorimetric investigation on the formation of palladium nanoparticles in water/AOT/n-heptane microemulsions. Thermochim Acta 254:111–119CrossRefGoogle Scholar
  40. 40.
    Aliotta F, Arcoleo V, Buccoleri S, Manna GL, Liveri VT (1995) Calorimetric investigation on the formation of gold nanoparticles in water/AOT/n-heptane microemulsions. Thermochim Acta 265:15–23CrossRefGoogle Scholar
  41. 41.
    Patakfalvi R, Dékány I (2005) Nucleation and growing of silver nanoparticles under control of titration microcalorimetric experiment. J Therm Anal Calorim 79:587–594CrossRefGoogle Scholar
  42. 42.
    Bonnemann H, Brijoux W, Brinkmann R, Tilling AS, Schilling T, Tesche B, Seevogel K, Franke R, Hormes J, Kohl G, Pollmann J, Rothe J, Vogel W (1998) Selective oxidation of glucose on bismuth-promoted Pd-Pt/C catalysts prepared from NOct(4)Cl-stabilized Pd-Pt colloids. Inorg Chim Acta 270(1–2):95–110CrossRefGoogle Scholar
  43. 43.
    Király Z, Veisz B, Mastalir Á, Rázga Z, Dékány I (1999) Preparation of an organophilic palladium montmorillonite catalyst in a micellar system. Chem Commun 19:1925–1926CrossRefGoogle Scholar
  44. 44.
    Reetz MT, Helbig W (1994) Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 116(16):7401–7402CrossRefGoogle Scholar
  45. 45.
    Reetz MT, Quaiser SA, Breinbauer R, Tesche B (1995) A new method for the preparation of nanostructured metal clusters. Angew Chem Int Ed Engl 34:2240–2241CrossRefGoogle Scholar
  46. 46.
    Wang Q, Liu H, Wang H (1997) Immobilization of polymer-stabilized noble metal colloids and their catalytic properties for hydrogenation of olefins. J Colloids Interface Sci 190:380–386CrossRefGoogle Scholar
  47. 47.
    Wang Y, Liu H, Huang Y (1996) Immobilization of polymer-protected metal colloid catalysts by the formation of polymer hydrogen bond complexes. Polym Adv Techol 7:634–638CrossRefGoogle Scholar
  48. 48.
    Dékány I, Turi L, Szűcs A, Király Z (1998) Preparation of semiconductor and transition metal nanoparticles on colloidal solid supports. Colloids Surf A 141:405–417CrossRefGoogle Scholar
  49. 49.
    Papp S, Szűcs A, Dékány I (2001) Preparation of Pd nanoparticles stabilized by polymers and layered silicate. Appl Clay Sci 19:155–172CrossRefGoogle Scholar
  50. 50.
    Király Z, Dékány I, Mastalir Á, Bartók M (1996) In situ generation of palladium nanoparticles in smectite clays. J Catal 161:401–408CrossRefGoogle Scholar
  51. 51.
    Szűcs A, Király Z, Berger F, Dékány I (1998) Preparation and hydrogen sorption of Pd nanoparticles on Al2O3 pillared clays. Colloids Surf A Physicochem Eng Asp 139:109–118CrossRefGoogle Scholar
  52. 52.
    Papp S, Dékány I (2006) Nucleation and growth of palladium nanoparticles stabilized by polymers and layer silicates. Colloid Polym Sci 284:1049–1056CrossRefGoogle Scholar
  53. 53.
    Patakfalvi R, Virányi Z, Dékány I (2004) Kinetics of silver nanoparticle growth in aqueous polymer solutions. Colloid Polym Sci 283(3):299–305CrossRefGoogle Scholar
  54. 54.
    Patakfalvi R, Papp S, Dékány I (2007) The kinetics of homogeneous nucleation of silver nanoparticles stabilized by polymers. J Nanoparticle Res 9:353–364CrossRefGoogle Scholar
  55. 55.
    Esumi K, Hosoya T, Yamahira A, Torigoe K (2000) Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers. J Colloid Interface Sci 226:346–352CrossRefGoogle Scholar
  56. 56.
    Dobos D (1979) Electrochemical tables. Műszaki könyvkiadó, BudapestGoogle Scholar
  57. 57.
    Papp S, Kőrösi L, Gool B, Dederichs T, Mela P, Möller M, Dékány I (2010) Formation of gold nanoparticles in diblock copolymer micelles with various reducing agents: kinetic and thermodynamic studies. J Therm Anal Calorim 101:865–872CrossRefGoogle Scholar
  58. 58.
    Papp S, Szél J, Oszkó A, Dékány I (2004) Synthesis of polymer-stabilized nanosized rhodium particles in the interlayer space of layered silicates. Chem Mater 16:1674–1685CrossRefGoogle Scholar
  59. 59.
    Papp S, Patakfalvi R, Dékány I (2008) Metal nanoparticle formation on layer silicate lamellae. Colloid Polym Sci 286:3–14CrossRefGoogle Scholar
  60. 60.
    Patakfalvi R, Dékány I (2004) Synthesis and intercalation of silver nanoparticles in kaolinite/DMSO complexes. Appl Clay Sci 25(3–4):149–159CrossRefGoogle Scholar
  61. 61.
    Patakfalvi R, Oszkó A, Dékány I (2003) Synthesis and characterization of silver nanoparticle/kaolinite composites. Colloids Surf A Physicochem Eng Asp 220(1–3):45–54CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Szilvia Papp
    • 1
  • László Kőrösi
    • 1
  • Rita Patakfalvi
    • 1
  • Imre Dékány
    • 1
    • 2
  1. 1.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  2. 2.Department of Physical Chemistry and Materials ScienceUniversity of SzegedSzegedHungary

Personalised recommendations