Advertisement

Introduction and General Overview

  • Gabriele Centi
  • Paola Lanzafame
  • Siglinda Perathoner
Chapter

Abstract

Catalysis plays a key role to address the challenge of sustainable energy and alternative methods to produce energy with respect to using fossil fuels. This field of research and development has given a new impetus to research on catalysis in areas such as producing biofuels, development of advanced electrodes for a number of applications (from new-generation photovoltaic cells to fuel cells), production of renewable H2 and in a longer-term perspective solar fuels. However, the discussion on the technical aspects on the development of catalysts in these areas should be complemented with considerations on the general economic and social context and related constrains which determine the choice of the research priorities. This introductory chapter was mainly focused on these aspects.

Keywords

Liquid Fuel Transport Sector Energy Infrastructure Energy Vector Solar Fuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This contribution summarizes the discussions made in the frames of various projects which are gratefully acknowledged: PRIN08 project “Catalytic upgrading of the fraction C5 in ligno-cellulosic biorefineries,” PRIN07 project “Sustainable processes of second generation for the production of H2 from renewable resources,” and the EU Network of Excellence IDECAT and of the Cost Action CM0903 (UBIOCHEM).

References

  1. 1.
    Spivey JJ (2005) Catalysis in the development of clean energy technologies. Catal Today 100:171–180CrossRefGoogle Scholar
  2. 2.
    Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3(2):209–222CrossRefGoogle Scholar
  3. 3.
    Centi G, Perathoner S (2009) Catalysis: role and challenges for a sustainable energy. Top Catal 52(8):948–961CrossRefGoogle Scholar
  4. 4.
    Centi G, Perathoner S (2008) Catalysis, a driver for sustainability and societal challenges. Catal Today 138(1–2):69–76CrossRefGoogle Scholar
  5. 5.
    Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff GL, Pederson LR, Zhang JG (2008) Oriented nanostructures for energy conversion and storage. ChemSusChem 1(8–9):676–697CrossRefGoogle Scholar
  6. 6.
    Su DS, Schlögl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3(2):136–168CrossRefGoogle Scholar
  7. 7.
    Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38:226–252CrossRefGoogle Scholar
  8. 8.
    Garcia-Martinez J (ed) (2010) Nanotechnology for the energy challenge. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    Centi G, Perathoner S (2009) The role of nanostructure in improving the performance of electrodes for energy storage and conversion. Eur J Inorg Chem 26:3851–3878CrossRefGoogle Scholar
  10. 10.
    Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295CrossRefGoogle Scholar
  11. 11.
    Gates BC, Huber GW, Marshall CL, Ross PN, Siirola J, Wang Y (2008) Catalysts for emerging energy applications. MRS Bull 33:429–435CrossRefGoogle Scholar
  12. 12.
    Centi G, Perathoner S (2011) Creating and mastering nano-objects to design advanced catalytic materials for societal challenges. Coord Chem Rev 255:1480–1498CrossRefGoogle Scholar
  13. 13.
    IEA (2009) World energy outlooks 2009. International Energy Agency, ParisGoogle Scholar
  14. 14.
    Maroto-Valer MM (ed) (2010) Developments and innovation in carbon dioxide (CO2) capture and storage technology, volume 2: carbon dioxide (CO2) storage and utilization. CRC Press, LondonGoogle Scholar
  15. 15.
    Jones W, Maginn EJ (guest eds) (2010) Carbon capture and sequestration (special issue). ChemSusChem 3(8):861–991Google Scholar
  16. 16.
    Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205CrossRefGoogle Scholar
  17. 17.
    Aresta M (ed) (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208CrossRefGoogle Scholar
  19. 19.
    Centi G, Perathoner S, Passalacqua R, Ampelli C (2012) Solar production of fuels from water and CO2. In: Veziroglu N, Muradov N (eds) Carbon neutral fuels and energy carriers: science and technology. Taylor & Francis, London, Ch. 4, pp 291–323Google Scholar
  20. 20.
    Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3):1259–1278CrossRefGoogle Scholar
  21. 21.
    International Energy Agency (IEA) (2010) Key world energy statistics 2009. IEA, ParisGoogle Scholar
  22. 22.
    Züttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a future energy carrier. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  23. 23.
    Centi G, van Santen RA (2007) Catalysis for renewables. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  24. 24.
    Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211CrossRefGoogle Scholar
  25. 25.
    Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. ChemSusChem 1(8–9):734–737CrossRefGoogle Scholar
  26. 26.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098CrossRefGoogle Scholar
  27. 27.
    Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10(8):2735–2741CrossRefGoogle Scholar
  28. 28.
    Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994CrossRefGoogle Scholar
  29. 29.
    Lewis NS, Crabtree G, Nozik A, Wasielewski M, Alivisatos P (2005) Basic research needs for solar energy utilization. US Department of Energy, Washington, DCCrossRefGoogle Scholar
  30. 30.
    Mandal TK, Gregory DH (2010) Hydrogen: a future energy vector for sustainable development. Proc Inst Mech Eng C J Mech Eng Sci 224(3):539–558CrossRefGoogle Scholar
  31. 31.
    Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP (2008) Hydrogen nexus in a sustainable energy future. Energy Environ Sci 1(1):79–86CrossRefGoogle Scholar
  32. 32.
    Farrauto RJ (2009) Building the hydrogen economy. Hydrocarbon Eng 14(2):25–30Google Scholar
  33. 33.
    Muradov NZ, Veziroglu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy 33(23):6804–6839CrossRefGoogle Scholar
  34. 34.
    Strahan D (2008) Hydrogen’s long road to nowhere. New Sci 200(2684):40–43CrossRefGoogle Scholar
  35. 35.
    Centi G, Perathoner S (2010) CO2-based energy vectors for the storage of solar energy. Greenhouse Gases Sci Technol 1:21–35CrossRefGoogle Scholar
  36. 36.
    Vlachos DG, Caratzoulas S (2010) The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chem Eng Sci 65(1):18–29CrossRefGoogle Scholar
  37. 37.
    Huber GW (ed) (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries. National Science Foundation, Washington, DCGoogle Scholar
  38. 38.
    Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133Google Scholar
  39. 39.
    Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167:14–30Google Scholar
  40. 40.
    Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15(1):53–66CrossRefGoogle Scholar
  41. 41.
    Cavani F, Centi G, Perathoner S, Trifiró F (2009) Sustainable industrial chemistry. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  42. 42.
    US Environmental Protection Agency (EPA) (2009) EPA lifecycle analysis of greenhouse gas emissions from renewable fuels. Report EPA-420-F-09-024Google Scholar
  43. 43.
    Hiederer R, Ramos F, Capitani C, Koeble R, Blujdea V, Gomez O, Mulligan D, Marelli L (2010) Biofuels: a new methodology to estimate GHG emissions from global land use change. European Commission, Joint Research Centre, report EUR 24483 EN—2010Google Scholar
  44. 44.
    Regalbuto JR (2010) An NSF perspective on next generation hydrocarbon biorefineries. Comput Chem Eng 34(9):1393–1396CrossRefGoogle Scholar
  45. 45.
    Lu A-H, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18(14):1793–1805CrossRefGoogle Scholar
  46. 46.
    Grimes CA, Mor GK (2009) TiO2 nanotube arrays: synthesis, properties, and applications. Springer, HeidelbergGoogle Scholar
  47. 47.
    Shankar K, Basham I, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold A, Ky-S C, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327–6359CrossRefGoogle Scholar
  48. 48.
    Centi G, Perathoner S (2009) Nano-architecture and reactivity of titania catalytic materials. Part 2. Bidimensional nanostructured films. Catalysis 21:82–130, Royal Society of Chemistry Pub: Cambridge, UKCrossRefGoogle Scholar
  49. 49.
    Tributsch H (2008) Photovoltaic hydrogen generation. Int J Hydrogen Energy 33(21):5911–5930CrossRefGoogle Scholar
  50. 50.
    Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33(21):5931–5940CrossRefGoogle Scholar
  51. 51.
    Wipke K, Sprik S, Kurtz J, Ramsden T (2010) Learning demonstration interim progress report—July 2010. Technical report NREL/TP-560-49129 (Sept 2010). National Renewable Energy Laboratory (NREL), Golden, COCrossRefGoogle Scholar
  52. 52.
    Liu C, Li F, Lai-Peng M, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62CrossRefGoogle Scholar
  53. 53.
    Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gabriele Centi
    • 1
  • Paola Lanzafame
    • 1
  • Siglinda Perathoner
    • 1
  1. 1.Department of Industrial Chemistry and Engineering of Materials and CASPE (INSTM Laboratory of Catalysis for Sustainable Production and Energy)University of MessinaMessinaItaly

Personalised recommendations