Skip to main content

Introduction and General Overview

  • Chapter
  • First Online:
Catalysis for Alternative Energy Generation

Abstract

Catalysis plays a key role to address the challenge of sustainable energy and alternative methods to produce energy with respect to using fossil fuels. This field of research and development has given a new impetus to research on catalysis in areas such as producing biofuels, development of advanced electrodes for a number of applications (from new-generation photovoltaic cells to fuel cells), production of renewable H2 and in a longer-term perspective solar fuels. However, the discussion on the technical aspects on the development of catalysts in these areas should be complemented with considerations on the general economic and social context and related constrains which determine the choice of the research priorities. This introductory chapter was mainly focused on these aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spivey JJ (2005) Catalysis in the development of clean energy technologies. Catal Today 100:171–180

    Article  CAS  Google Scholar 

  2. Schlögl R (2010) The role of chemistry in the energy challenge. ChemSusChem 3(2):209–222

    Article  Google Scholar 

  3. Centi G, Perathoner S (2009) Catalysis: role and challenges for a sustainable energy. Top Catal 52(8):948–961

    Article  CAS  Google Scholar 

  4. Centi G, Perathoner S (2008) Catalysis, a driver for sustainability and societal challenges. Catal Today 138(1–2):69–76

    Article  CAS  Google Scholar 

  5. Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff GL, Pederson LR, Zhang JG (2008) Oriented nanostructures for energy conversion and storage. ChemSusChem 1(8–9):676–697

    Article  CAS  Google Scholar 

  6. Su DS, Schlögl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3(2):136–168

    Article  CAS  Google Scholar 

  7. Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38:226–252

    Article  CAS  Google Scholar 

  8. Garcia-Martinez J (ed) (2010) Nanotechnology for the energy challenge. Wiley-VCH, Weinheim

    Google Scholar 

  9. Centi G, Perathoner S (2009) The role of nanostructure in improving the performance of electrodes for energy storage and conversion. Eur J Inorg Chem 26:3851–3878

    Article  Google Scholar 

  10. Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295

    Article  CAS  Google Scholar 

  11. Gates BC, Huber GW, Marshall CL, Ross PN, Siirola J, Wang Y (2008) Catalysts for emerging energy applications. MRS Bull 33:429–435

    Article  CAS  Google Scholar 

  12. Centi G, Perathoner S (2011) Creating and mastering nano-objects to design advanced catalytic materials for societal challenges. Coord Chem Rev 255:1480–1498

    Article  CAS  Google Scholar 

  13. IEA (2009) World energy outlooks 2009. International Energy Agency, Paris

    Google Scholar 

  14. Maroto-Valer MM (ed) (2010) Developments and innovation in carbon dioxide (CO2) capture and storage technology, volume 2: carbon dioxide (CO2) storage and utilization. CRC Press, London

    Google Scholar 

  15. Jones W, Maginn EJ (guest eds) (2010) Carbon capture and sequestration (special issue). ChemSusChem 3(8):861–991

    Google Scholar 

  16. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148(3–4):191–205

    Article  CAS  Google Scholar 

  17. Aresta M (ed) (2010) Carbon dioxide as chemical feedstock. Wiley-VCH, Weinheim

    Google Scholar 

  18. Centi G, Perathoner S (2010) Towards solar fuels from water and CO2. ChemSusChem 3:195–208

    Article  CAS  Google Scholar 

  19. Centi G, Perathoner S, Passalacqua R, Ampelli C (2012) Solar production of fuels from water and CO2. In: Veziroglu N, Muradov N (eds) Carbon neutral fuels and energy carriers: science and technology. Taylor & Francis, London, Ch. 4, pp 291–323

    Google Scholar 

  20. Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4(3):1259–1278

    Article  CAS  Google Scholar 

  21. International Energy Agency (IEA) (2010) Key world energy statistics 2009. IEA, Paris

    Google Scholar 

  22. Züttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a future energy carrier. Wiley-VCH, Weinheim

    Book  Google Scholar 

  23. Centi G, van Santen RA (2007) Catalysis for renewables. Wiley-VCH, Weinheim

    Book  Google Scholar 

  24. Stöcker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 47(48):9200–9211

    Article  Google Scholar 

  25. Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. ChemSusChem 1(8–9):734–737

    Article  CAS  Google Scholar 

  26. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  27. Nozik AJ (2010) Nanoscience and nanostructures for photovoltaics and solar fuels. Nano Lett 10(8):2735–2741

    Article  CAS  Google Scholar 

  28. Morris AJ, Meyer GJ, Fujita E (2009) Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 42(12):1983–1994

    Article  CAS  Google Scholar 

  29. Lewis NS, Crabtree G, Nozik A, Wasielewski M, Alivisatos P (2005) Basic research needs for solar energy utilization. US Department of Energy, Washington, DC

    Book  Google Scholar 

  30. Mandal TK, Gregory DH (2010) Hydrogen: a future energy vector for sustainable development. Proc Inst Mech Eng C J Mech Eng Sci 224(3):539–558

    Article  Google Scholar 

  31. Sartbaeva A, Kuznetsov VL, Wells SA, Edwards PP (2008) Hydrogen nexus in a sustainable energy future. Energy Environ Sci 1(1):79–86

    Article  CAS  Google Scholar 

  32. Farrauto RJ (2009) Building the hydrogen economy. Hydrocarbon Eng 14(2):25–30

    CAS  Google Scholar 

  33. Muradov NZ, Veziroglu TN (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy 33(23):6804–6839

    Article  CAS  Google Scholar 

  34. Strahan D (2008) Hydrogen’s long road to nowhere. New Sci 200(2684):40–43

    Article  CAS  Google Scholar 

  35. Centi G, Perathoner S (2010) CO2-based energy vectors for the storage of solar energy. Greenhouse Gases Sci Technol 1:21–35

    Article  Google Scholar 

  36. Vlachos DG, Caratzoulas S (2010) The roles of catalysis and reaction engineering in overcoming the energy and the environment crisis. Chem Eng Sci 65(1):18–29

    Article  CAS  Google Scholar 

  37. Huber GW (ed) (2008) Breaking the chemical and engineering barriers to lignocellulosic biofuels: next generation hydrocarbon biorefineries. National Science Foundation, Washington, DC

    Google Scholar 

  38. Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S (2010) Next-generation biofuels: survey of emerging technologies and sustainability issues. ChemSusChem 3(10):1106–1133

    Google Scholar 

  39. Centi G, Lanzafame P, Perathoner S (2011) Analysis of the alternative routes in the catalytic transformation of lignocellulosic materials. Catal Today 167:14–30

    Google Scholar 

  40. Cherubini F, Jungmeier G (2010) LCA of a biorefinery concept producing bioethanol, bioenergy, and chemicals from switchgrass. Int J Life Cycle Assess 15(1):53–66

    Article  CAS  Google Scholar 

  41. Cavani F, Centi G, Perathoner S, Trifiró F (2009) Sustainable industrial chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  42. US Environmental Protection Agency (EPA) (2009) EPA lifecycle analysis of greenhouse gas emissions from renewable fuels. Report EPA-420-F-09-024

    Google Scholar 

  43. Hiederer R, Ramos F, Capitani C, Koeble R, Blujdea V, Gomez O, Mulligan D, Marelli L (2010) Biofuels: a new methodology to estimate GHG emissions from global land use change. European Commission, Joint Research Centre, report EUR 24483 EN—2010

    Google Scholar 

  44. Regalbuto JR (2010) An NSF perspective on next generation hydrocarbon biorefineries. Comput Chem Eng 34(9):1393–1396

    Article  CAS  Google Scholar 

  45. Lu A-H, Schüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18(14):1793–1805

    Article  CAS  Google Scholar 

  46. Grimes CA, Mor GK (2009) TiO2 nanotube arrays: synthesis, properties, and applications. Springer, Heidelberg

    Google Scholar 

  47. Shankar K, Basham I, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold A, Ky-S C, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327–6359

    Article  CAS  Google Scholar 

  48. Centi G, Perathoner S (2009) Nano-architecture and reactivity of titania catalytic materials. Part 2. Bidimensional nanostructured films. Catalysis 21:82–130, Royal Society of Chemistry Pub: Cambridge, UK

    Article  CAS  Google Scholar 

  49. Tributsch H (2008) Photovoltaic hydrogen generation. Int J Hydrogen Energy 33(21):5911–5930

    Article  CAS  Google Scholar 

  50. Gibson TL, Kelly NA (2008) Optimization of solar powered hydrogen production using photovoltaic electrolysis devices. Int J Hydrogen Energy 33(21):5931–5940

    Article  CAS  Google Scholar 

  51. Wipke K, Sprik S, Kurtz J, Ramsden T (2010) Learning demonstration interim progress report—July 2010. Technical report NREL/TP-560-49129 (Sept 2010). National Renewable Energy Laboratory (NREL), Golden, CO

    Book  Google Scholar 

  52. Liu C, Li F, Lai-Peng M, Cheng H-M (2010) Advanced materials for energy storage. Adv Mater 22(8):E28–E62

    Article  CAS  Google Scholar 

  53. Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sustain Energy Rev 13(9):2373–2384

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This contribution summarizes the discussions made in the frames of various projects which are gratefully acknowledged: PRIN08 project “Catalytic upgrading of the fraction C5 in ligno-cellulosic biorefineries,” PRIN07 project “Sustainable processes of second generation for the production of H2 from renewable resources,” and the EU Network of Excellence IDECAT and of the Cost Action CM0903 (UBIOCHEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Centi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Centi, G., Lanzafame, P., Perathoner, S. (2012). Introduction and General Overview. In: Guczi, L., Erdôhelyi, A. (eds) Catalysis for Alternative Energy Generation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0344-9_1

Download citation

Publish with us

Policies and ethics