Tensor Products and Forms

  • Paul A. Fuhrmann
Part of the Universitext book series (UTX)


In this chapter, we discuss the general theory of quadratic forms and the notion of congruence and its invariants, as well as the applications of the theory to the analysis of special forms. We will focus primarily on quadratic forms induced by rational functions, most notably the Hankel and Bezout forms, because of their connection to system-theoretic problems such as stability and signature symmetric realizations. These forms use as their data different representations of rational functions, namely power series and coprime factorizations respectively. But we will discuss also the partial fraction representation in relation to the computation of the Cauchy index of a rational function and the proof of the Hermite–Hurwitz theorem and the continued fraction representation as a tool in the computation of signatures of Hankel matrices as well as in the problem of Hankel matrix inversion. Thus, different representations of rational functions, i.e., different encodings of the information carried by a rational function, provide efficient starting points for different methods. The results obtained for rational functions will be applied to root-location problems for polynomials in the next chapter.


Cauchy Index Bezout Hankel Matrix Continued Fraction Representation Root-location Problems 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paul A. Fuhrmann
    • 1
  1. 1.Ben-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations