Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 722))

Abstract

Noncoding RNAs form an indispensible component of the cellular information processing networks, a role that crucially depends on the specificity of their interactions among each other as well as with DNA and protein. Patterns of intramolecular and intermolecular base pairs govern most RNA interactions. Specific base pairs dominate the structure formation of nucleic acids. Only little details distinguish intramolecular secondary structures from those cofolding molecules. RNA-protein interactions, on the other hand, are strongly dependent on the RNA structure as well since the sequence content of helical regions is largely unreadable, so that sequence specificity is mostly restricted to unpaired loop regions. Conservation of both sequence and structure thus this can give indications of the functioning of the diversity of ncRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral PP, Dinger ME, Mercer TR et al. The eukaryotic genome as an RNA machine. Science 2008; 319:1787–1789.

    Article  PubMed  CAS  Google Scholar 

  2. Collins LC, Penny D. The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet 2009; 25:120–128.

    Article  PubMed  CAS  Google Scholar 

  3. The Athanasius F. Bompfunewerer RNA Consortium: RNA’s everywhere: genome-wide annotation of structured RNA’s. J Exp Zool B: Mol Dev Evol 2007; 308B:1–25.

    Article  Google Scholar 

  4. Bompfünewerer AF, Flamm C, Fried C et al. Evolutionary patterns of noncoding RNAs. Theory Biosci 2005; 123:301–369.

    Article  PubMed  CAS  Google Scholar 

  5. Leontis NB, Westhof E. Analysis of RNA motifs. Curr Opin Struct Biol 2003; 13:300–308.

    Article  PubMed  CAS  Google Scholar 

  6. Komissarova N, Becker J, Solter S et al. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Molecular Cell 2002; 10:1151–1162.

    Article  PubMed  CAS  Google Scholar 

  7. MacNeill SA. DNA replication: partners in the Okazaki two-step. Curr Biol 2001; 11(20):R842–R844.

    Article  PubMed  CAS  Google Scholar 

  8. Nadal A, Eritja R, Esteve T et al. “Parallel” and “antiparallel tail-clamps” increase the efficiency of triplex formation with structured DNA and RNA targets. Chembiochem 2005; 6:1034–1042.

    Article  PubMed  CAS  Google Scholar 

  9. Suzuki T. Targeted gene modification by oligonucleotides and small DNA fragments in eukaryotes. Front Biosci 2008; 13:737–744.

    Article  PubMed  CAS  Google Scholar 

  10. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007; 447:799–816.

    Article  CAS  Google Scholar 

  11. The FANTOM Consortium. The Transcriptional Landscape of the Mammalian Genome. Science 2005; 309:1159–1563.

    Article  CAS  Google Scholar 

  12. Khalil AM, Guttman M, Huarte M et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106:11675–11680.

    Article  Google Scholar 

  13. Sheik MJ, Gaughwin PM, Lim B et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 2010; 16:324–337.

    Article  CAS  Google Scholar 

  14. Mattick JS, Amaral PP, Dinger ME et al. RNA regulation of epigenetic processes. Bioessays 2009; 31:51–59.

    Article  PubMed  CAS  Google Scholar 

  15. Mondal T, Rasmussen M, Pandey GK et al. Characterization of the RNA content of chromatin. Nat Methods. 2010;7(8):582

    Article  CAS  Google Scholar 

  16. Harrison BR, Yazgan O, Krebs JE. Life without RNAi: noncoding RNAs and their functions in Saccharomyces cerevisiae. Biochem Cell Biol 2009; 87:767–779.

    Article  PubMed  CAS  Google Scholar 

  17. Matzke M, Kanno T, Daxinger L et al. RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 2009; 21:367–376.

    Article  PubMed  CAS  Google Scholar 

  18. Swiezewski S, Liu F, Magusin A et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 2009; 462:799–802.

    Article  PubMed  CAS  Google Scholar 

  19. Marques AC, Ponting CP. Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 2009; 10:R124.

    Article  PubMed  CAS  Google Scholar 

  20. Hiller M, Findeiß S, Lein S et al. Conserved introns reveal novel transcripts in Drosophila melanogaster. Genome Res 2009; 19:1289–1300.

    Article  PubMed  CAS  Google Scholar 

  21. Hekimoglu B, Ringrose L. Noncoding RNAs in polycomb/trithorax regulation. RNA Biol 2009; 6:129–137.

    Article  PubMed  CAS  Google Scholar 

  22. Stein AJ, Fuchs G, Fu C et al. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell 2005; 121:529–539.

    Article  PubMed  CAS  Google Scholar 

  23. Christov CP, Gardiner TJ, Szüts D et al. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol Cell Biol 2006; 26:6993–7004.

    Article  PubMed  CAS  Google Scholar 

  24. Krude T. Non-coding RNAs: New players in the field of eukaryotic DNA replication. In: Nasheuer HP, ed. Genome Stability and Human Diseases. New York: Springer, 2010:105–118.

    Chapter  Google Scholar 

  25. Szüts D, Christov C, Kitching L et al. Distinct populations of human PCNA are required for initiation of chromosomal DNA replication and concurrent DNA repair. Exp Cell Res 2005; 311:240–250.

    Article  PubMed  CAS  Google Scholar 

  26. Szüts D, Kitching L, Christov C et al. RPA is an initiation factor for human chromosomal DNA replication. Nucleic Acids Res 2003; 31:1725–1734.

    Article  PubMed  CAS  Google Scholar 

  27. Mosig A, Guofeng M, Stadler BMR et al. Evolution of the vertebrate Y RNA cluster. Theory Biosci 2007; 126:9–14.

    Article  PubMed  CAS  Google Scholar 

  28. Perreault J, Perreault JP, Boire G. Ro-associated Y RNAs in metazoans: evolution and diversification. Mol Biol Evol 2007; 24:1678–1689.

    Article  PubMed  CAS  Google Scholar 

  29. Boria I, Gruber AR, Tanzer A et al. Nematode sbRNAs: homologs of vertebrate Y RNAs. J Mol Evol 2010.

    Google Scholar 

  30. Aitken CE, Petrov A, Puglisi JD. Single ribosome dynamics and the mechanism of translation. Annu Rev Biophys 2010; 39.

    Google Scholar 

  31. Valadkhan S. snRNAs as the catalysts of pre-mRNA splicing. Curr1 Op1 Chem1 Biol 2005; 9:603–608.

    Article  CAS  Google Scholar 

  32. Brunel C, Romby P. Probing RNA structure and RNA-ligand complexes with chemical probes. Methods Enzymol 2000; 318:3–21.

    Article  PubMed  CAS  Google Scholar 

  33. Mathews D, Sabina J, Zuker M et al. Expanded sequence dependence of thermodynamic parameters improves prediction of scRNA secondary structure. J Mol Biol 1999; 288:911–940.

    Article  PubMed  CAS  Google Scholar 

  34. Alkan C, Karakoc E, Nadeau JH et al. RNA-RNA interaction prediction and antisense RNA target search. J Comput Biol 2006; 13:267–282.

    Article  PubMed  CAS  Google Scholar 

  35. Hofacker IL, Fontana W, Stadler PF et al. Fast folding and comparison of RNA secondary structures. Monatsh Chem 1994; 125:167–188.

    Article  CAS  Google Scholar 

  36. Rivas E, Eddy SR. A Dynamic programming algorithms for RNA structure prediction including pseudoknots. J Mol Biol 1999; 285:2053–2068.

    Article  PubMed  CAS  Google Scholar 

  37. Rehmsmeier M, Steffen P, Höchsmann M et al. Fast and effective prediction of microRNA/target duplexes. Gene 2004; 10:1507–1517.

    CAS  Google Scholar 

  38. Mückstein U, Tafer H, Hackermüller J et al. Thermodynamics of RNA-RNA binding. Bioinformatics 2006; 22:1177–1182.

    Article  PubMed  CAS  Google Scholar 

  39. Busch A, Richter AS, Backofen R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 2008; 24:2849–2856.

    Article  PubMed  CAS  Google Scholar 

  40. Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques 2008; 44:613–616.

    Article  PubMed  CAS  Google Scholar 

  41. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136:642–655.

    Article  PubMed  CAS  Google Scholar 

  42. Verdel A, Vavasseur A, Le Gorrec M et al. Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 2009; 53:245–257.

    Article  PubMed  CAS  Google Scholar 

  43. Hertel J, Lindemeyer M, Missal K et al. The expansion of the metazoan MicroRNA repertoire. BMC Genomics 2006; 7:15.

    Article  CAS  Google Scholar 

  44. Brodersen P, Voinnet O. Revisiting the principles of microRNA target recognition and mode of action. Nat Rev Mol Cell Biol 2009; 10:141–148.

    Article  PubMed  CAS  Google Scholar 

  45. Song JJ, Smith SK, Hannon GJ et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004; 305:1434–1437.

    Article  PubMed  CAS  Google Scholar 

  46. Vogel J, Sharma CM. How to find small noncoding RNAs in bacteria. Biol Chem 2005; 386:1219–1238.

    Article  PubMed  CAS  Google Scholar 

  47. Waters LS, Storz G. Regulatory RNAs in bacteria. Cell 2009; 136:615–628.

    Article  PubMed  CAS  Google Scholar 

  48. Sharma CM, Hoffmann S, Darfeuille F et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 2010; 464:250–255.

    Article  PubMed  CAS  Google Scholar 

  49. Sharma CM, Darfeuille F, Plantinga TH et al. A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 2007; 21:2804–2817.

    Article  PubMed  CAS  Google Scholar 

  50. Fröhlich KS, Vogel J. Activation of gene expression by small RNA. CurrOpinMicrobiol 2009; 12:674–682.

    Google Scholar 

  51. Meisner NC, Hackermüller J, Uhl V et al. mRNA openers and closers: modulating AU-rich element-controlled mRNA stability by a molecular switch in mRNA secondary structure. Chembiochem 2004; 5:1432–1447.

    Article  PubMed  CAS  Google Scholar 

  52. Hackermüller J, Meisner NC, Auer M et al. The effect of RNA secondary structures on RNA-ligand binding and the modifier RNA mechanism: a quantitative model. Gene 2005; 345:3–12.

    Article  PubMed  CAS  Google Scholar 

  53. Henkin TM. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 2008; 22:3383–3390.

    Article  PubMed  CAS  Google Scholar 

  54. Kaempfer R. RNA sensors: novel regulators of gene expression. EMBO Rep 2003; 4:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  55. Ray PS, Jia J, Yao P et al. A stress-responsive RNA switch regulates VEGFA expression. Nature 2009; 457:915–919.

    Article  PubMed  CAS  Google Scholar 

  56. Limbach PA, Crain PF, McCloskey JA. Summary: the modified nucleosides of RNA. Nucleic Acids Res 1994; 22:2183–2196.

    Article  PubMed  CAS  Google Scholar 

  57. Dunin-Horkawicz S, Czerwoniec A, Gajda MJ et al. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res 2006; 34:D145–D149.

    Article  PubMed  CAS  Google Scholar 

  58. Bachellerie JP, Cavaillé J, Hüttenhofer A. The expanding snoRNA world. Biochimie 2002; 84:775–790.

    Article  PubMed  CAS  Google Scholar 

  59. Henras AK, Capeyrou R, Henry Y et al. Cbf5p, the putative pseudouridine synthase of H/ACA-type snoRNPs, can form a complex with Gar1p and Nop10p in absence of Nhp2p and box H/ACA snoRNAs. RNA 2004; 10:1704–1712.

    Article  PubMed  CAS  Google Scholar 

  60. Singh SK, Gurha P, Gupta R. Dynamic guide-target interactions contribute to sequential 2′-O-methylation by a unique archaeal dual guide box C/D sRNP. RNA 2008; 14:1411–1423.

    Article  PubMed  CAS  Google Scholar 

  61. Vitali P, Basyuk E, Le Meur E et al. ADAR2-mediated editing of RNA substrates in the nucleolus is inhibited by C/D small nucleolar RNAs. J Cell Biol 2005; 169:745–753.

    Article  PubMed  CAS  Google Scholar 

  62. Rogelj B. Brain-specific small nucleolar RNAs. J Mol Neurosci 2006; 28:103–109.

    Article  PubMed  CAS  Google Scholar 

  63. Proudfoot N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 2004; 16:272–278.

    Article  PubMed  CAS  Google Scholar 

  64. Marzluff WF. Metazoan replication-dependent histone mRNAs: a distinct set of RNA polymerase II transcripts. Curr Opin Cell Biol 2005; 17:274–280.

    Article  PubMed  CAS  Google Scholar 

  65. Baillat D, Hakimi MA, Näär AM et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 2005; 123:265–276.

    Article  PubMed  CAS  Google Scholar 

  66. Box JA, Bunch JT, Tang W et al. Spliceosomal cleavage generates the 3′ end of telomerase RNA. Nature 2008; 456:910–914.

    Article  PubMed  CAS  Google Scholar 

  67. Wilusz JE, Spector DL. An unexpected ending: noncanonical 3′ end processing mechanisms. RNA 2010; 16:259–266.

    Article  PubMed  CAS  Google Scholar 

  68. Marz M, Stadler PF. Comparative analysis of eukaryotic U3 snoRNA. RNA Biol 2009; 6:503–507.

    Article  PubMed  CAS  Google Scholar 

  69. Atzorn V, Fragapane P, Kiss T. U17/snR30 Is a Ubiquitous snoRNA with Two Conserved Sequence Motifs Essential for 18S rRNA Production. Mol Cell Biol 2004; 24:1769–1778.

    Article  PubMed  CAS  Google Scholar 

  70. Shikanai T. RNA editing in plant organelles: machinery, physiological function and evolution. Cell Mol Life Sci 2006; 63:698–708.

    Article  PubMed  CAS  Google Scholar 

  71. Simpson L, Aphasizhev R, Gao G et al. Mitochondrial proteins and complexes in Leishmania and Trypanosoma involved in U-insertion/deletion RNA editing. RNA 2004; 10:159–170.

    Article  PubMed  CAS  Google Scholar 

  72. Ochsenreiter T, Cipriano M, Hajduk SL. Alternative mRNA editing in Trypanosomes is extensive and may contribute to mitochondrial protein diversity. PLoS One 2008; 3:e1566.

    Article  PubMed  CAS  Google Scholar 

  73. Madej MJ, Niemann M, Hüttenhofer A et al. Identification of novel guide RNAs from the mitochondria of Trypanosoma brucei. RNA Biology 2008; 5:84–91.

    Article  PubMed  CAS  Google Scholar 

  74. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327:167–170.

    Article  PubMed  CAS  Google Scholar 

  75. van der Oost J, Jore MM, Westra ER et al. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 2009; 34:401–407.

    Article  PubMed  CAS  Google Scholar 

  76. Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 2010; 11:181–190.

    Article  PubMed  CAS  Google Scholar 

  77. Barrangou R, Fremaux C, Deveau H et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315:1709–1712.

    Article  PubMed  CAS  Google Scholar 

  78. Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 2006; 62:718–729.

    Article  PubMed  CAS  Google Scholar 

  79. Karginov FV, Hannon GJ. The CRISPR system: small RNA-guided defense in bacteria and archaea. Mol Cell 2010; 37:7–19.

    Article  PubMed  CAS  Google Scholar 

  80. Valadkhan S. The spliceosome: a ribozyme at heart? Biol Chem 2007; 388:693–697.

    Article  PubMed  CAS  Google Scholar 

  81. Warf MB, Berglund JA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem Sci 2010; 35:169–178.

    Article  PubMed  CAS  Google Scholar 

  82. Piccinelli P, Rosenblad MA, Samuelsson T. Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes. Nucleic Acids Res 2005; 33:4485–4495.

    Article  PubMed  CAS  Google Scholar 

  83. Collins LJ, Moulton V, Penny D. Use of RNA secondary structure for studying the evolution of RNase P and RNase MrP. J Mol Evol 2000; 51:194–204.

    PubMed  CAS  Google Scholar 

  84. Aspinall TV, Gordon JMB, Bennet HJ et al. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture. Nucleic Acids Res 2007; 35:6439–6450.

    Article  PubMed  CAS  Google Scholar 

  85. Walker SC, Engelke DR. Ribonuclease P: the evolution of an ancient RNA enzyme. Crit Rev Biochem Mol Biol 2006; 41:77–102.

    Article  PubMed  CAS  Google Scholar 

  86. Rosenblad MA, López MD, Piccinelli P et al. Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes. Nucleic Acids Res 2006; 34:5145–5156.

    Article  PubMed  CAS  Google Scholar 

  87. Talini G, Gallori E, Maurel MC. Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol 2009; 160:457–465.

    Article  PubMed  CAS  Google Scholar 

  88. Krueger BJ, Jeronimo C, Roy BB et al. LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res 2008; 36:2219–2229.

    Article  PubMed  CAS  Google Scholar 

  89. Murphy S, Di Liegro C, Melli M. The in vitro transcription of the 7SK RNA gene by RNA polymerase I is dependent only on the presence of an upstream promoter. Cell 1987; 51:81–87.

    Article  PubMed  CAS  Google Scholar 

  90. Gruber AR, Kilgus C, Mosig A et al. Arthropod 7SK RNA. Mol Biol Evol 2008; 25:1923–1930.

    Article  PubMed  CAS  Google Scholar 

  91. Gruber AR, Koper-Emde D, Marz M et al. Invertebrate 7SK snRNAs. J Mol Evol 2008; 66:107–115.

    Article  PubMed  CAS  Google Scholar 

  92. Marz M, Donath A, Verstraete N et al. Evolution of 7SK RNA and its protein partners in metazoa. Mol Biol Evol 2009; 26:2821–2830.

    Article  PubMed  CAS  Google Scholar 

  93. Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol1 Cell 2006; 23:297–305.

    Article  CAS  Google Scholar 

  94. Egloff S, Van Herreweghe E, Kiss T. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding. Mol1 Cell1 Biol 2006; 26:630–642.

    Article  CAS  Google Scholar 

  95. Yik JH, Chen R, Nishimura R et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 2003; 12:971–982.

    Article  PubMed  CAS  Google Scholar 

  96. Michels AA, Nguyen VT, Fraldi A et al. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 2003; 23:4859–4869.

    Article  PubMed  CAS  Google Scholar 

  97. Blazek D, Barboric M, Kohoutek J et al. Oligomerization of HEXIM1 via 7SK snRNA and coiled-coil region directs the inhibition of P-TEFb. Nucleic Acids Res 2005; 33:7000–7010.

    Article  PubMed  CAS  Google Scholar 

  98. Markert A, Grimm M, Martinez J et al. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. EMBO Rep 2008; 9:569–575.

    Article  PubMed  CAS  Google Scholar 

  99. He S, Su H, Liu C et al. MicroRNA-encoding long noncoding RNAs. BMc Genomics 2008; 21:236.

    Article  CAS  Google Scholar 

  100. Gürsoy HC, Koper D, Benecke BJ. The vertebrate 7S K RNA separates hagfish (Myxine glutinosa) and lamprey (Lampetra fluviatilis). Jl Moll Evol 2000; 50:456–464.

    Google Scholar 

  101. Bousquet-Antonelli C, Deragon JM. A comprehensive analysis of the La-motif protein superfamily. RNA 2009; 15:750–764.

    Article  PubMed  CAS  Google Scholar 

  102. Byers SA, Price JP, Cooper JJ et al. HEXIM2:a HEXIM1-related protein, regulates positive transcription elongation factor b through association with 7SK. J Biol Chem 2005; 280:16360–16377.

    Article  PubMed  CAS  Google Scholar 

  103. Rosenblad MA, Gorodkin J, Knudsen B et al. SrPDB: signal recognition particle database. Nucleic acids Res 2003; 31:363–364.

    Article  PubMed  CAS  Google Scholar 

  104. Andersen ES, Rosenblad MA, Larsen N et al. the tmRDB and SRPDB resources. Nucleic acids res 2006; 34:163–168.

    Article  CAS  Google Scholar 

  105. Bürk J, Weiche B, Wenk M et al. Depletion of the signal recognition particle receptor inactivates ribosomes in Escherichia coli. J Bacteriol 2009; 191:7017–7026.

    Article  PubMed  CAS  Google Scholar 

  106. Rosenblad MA, Samuelsson T. Identification of chloroplast signal recognition particle RNA genes. Plant Cell Physiol 2004; 45:1633–1639.

    Article  PubMed  CAS  Google Scholar 

  107. Jaru-Ampornpan P, Nguyen TX, Shan SO. A distinct mechanism to achieve efficient signal recognition particle (SRP)-SRP receptor interaction by the chloroplast srp pathway. Mol Biol Cell 2009; 20:3965–3973.

    Article  PubMed  CAS  Google Scholar 

  108. Chen JLWGC. An emerging consensus for telomerase RNA structure. Proc Natl Acad Sci USA 2004; 101:14683–14684.

    Article  PubMed  CAS  Google Scholar 

  109. Podlevsky JD, Bley CJ, Omana RV et al. The telomerase database. Nucleic Acids Res 2008; 36:D339–D343.

    Article  PubMed  CAS  Google Scholar 

  110. Xie M, Mosig A, Qi X et al. Size variation and structural conservation of vertebrate telomerase RNA. J Biol Chem 2008; 283:2049–2059.

    Article  PubMed  CAS  Google Scholar 

  111. Artandi SE, DePinho RA. Telomeres and telomerase in cancer. Carcinogenesis 2010; 31:9–18.

    Article  PubMed  CAS  Google Scholar 

  112. Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 2003; 25:1147–1149.

    Article  PubMed  Google Scholar 

  113. Dávila López M, Rosenblad MA, Samuelsson T. Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 2008; 36:3001–3010.

    Article  CAS  Google Scholar 

  114. Hastings KE. SL trans-splicing: easy come or easy go? Trends Genet 2005; 21:240–247.

    Google Scholar 

  115. Nilsen TW. Evolutionary origin of SL-addition trans-splicing: still an enigma. Trends Genet 2001; 17:678–680.

    Article  PubMed  CAS  Google Scholar 

  116. MacMorris M, Kumar M, Lasda E et al. A novel family of C. elegans snRNPs contains proteins associated with trans-splicing. RNA 2007; 13:511–520.

    Article  PubMed  CAS  Google Scholar 

  117. Smith S. The world according to PARP. Trends Biochem Sci 2001; 26:174–179.

    Article  PubMed  CAS  Google Scholar 

  118. Stadler PF, Chen JJL, Hackermüller J et al. Evolution of vault RNAs. Mol Biol Evol 2009; 26:1975–1991.

    Article  PubMed  CAS  Google Scholar 

  119. Mosig A, Zhu L, Stadler PF. Customized strategies for discovering distant ncRNA homologs. Brief Funct Genomics Proteomics 2009; 8:451–460.

    Article  CAS  Google Scholar 

  120. van Zon A, Mossink MH, Scheper RJ et al. The vault complex. Cell Mol Life Sci 2003; 60:1828–1837.

    Article  PubMed  CAS  Google Scholar 

  121. Zappulla DC, Cech TR. RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol 2006; 71:217–224.

    Article  PubMed  CAS  Google Scholar 

  122. Jolly C, Lakhotia SC. Human sat III and Drosophila hsrω transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res 2006; 34:5508–5514.

    Article  PubMed  CAS  Google Scholar 

  123. Bond A, VanGompel MJW, Sametsky E et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neuroscience 2009; 12:1020–1027.

    Article  PubMed  CAS  Google Scholar 

  124. Sasaki YTF, Ideue T, Sano M et al. MENεβ noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 2009; 106:2525–2530.

    Article  PubMed  CAS  Google Scholar 

  125. Mourtada-Maarabouni M, Pickard MR, Hedge VL et al. GAS5:a nonprotein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 2009; 28:195–208.

    Article  PubMed  CAS  Google Scholar 

  126. Betel D, Sheridan R, Marks DS et al. Computational analysis of mouse piRNA sequence and biogenesis. PLoS comput Biol 2007; 3:e222.

    Article  PubMed  CAS  Google Scholar 

  127. Bond CS, Fox AH. Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 2009; 186:637–644.

    Article  PubMed  CAS  Google Scholar 

  128. Cole C, Sobala A, Lu C et al. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009; 15:2147–2160.

    Article  PubMed  CAS  Google Scholar 

  129. Langenberger D, Bermudez-Santana C, Stadler PF et al. Identification and classification of small RNAs in transcriptome sequence data. Pac1 Symp1 Biocomput 2010; 15:80–87.

    Google Scholar 

  130. Taft RJ, Glazov EA, Lassmann T et al. Small RNAs derived from snoRNAs. RNA 2009; 15:1233–1240.

    Article  PubMed  CAS  Google Scholar 

  131. Ender C, Krek A, Friedländer MR et al. A human snoRNA with microRNA-like functions. Mol Cell 2008; 32:519–528.

    Article  PubMed  CAS  Google Scholar 

  132. Lee YS, Shibata Y, Malhotra A et al. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23:2639–2649.

    Article  PubMed  CAS  Google Scholar 

  133. Persson H, Kvist A, Vallon-Christersson J et al. The noncoding RNA of the multidrug resistance-linked vault particle encodes multiple regulatory small RNAs. Nat Cell Biol 2009; 11:1268–1271.

    Article  PubMed  CAS  Google Scholar 

  134. Stadler P. Evolution of the long noncoding RNAs MALAT1 and MENβε. In: Ferreira CE, Satoru M, Stadler P eds. Proceedings of the Brazilian Symposium on Bioinformatics. Lecture Notes in Computer Science. New York: Springer, 2010.

    Google Scholar 

  135. Huang FWD, Qin J, Reidys CM et al. Target prediction and a statistical sampling algorithm for RNA-RNA interaction. Bioinformatics 2010; 26:175–181.

    Article  PubMed  CAS  Google Scholar 

  136. Ni J, Tien AL, Fournier MJ. Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA. Cell 1997; 89:565–573.

    Article  PubMed  CAS  Google Scholar 

  137. Yu LE, Koslowsky DJ. Interactions of mRNAs and gRNAs involved in trypanosome mitochondrial RNA editing: Structure probing of a gRNA bound to its cognate mRNA. RNA 2006; 12:1050–1060.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marz, M., Stadler, P.F. (2011). RNA Interactions. In: Collins, L.J. (eds) RNA Infrastructure and Networks. Advances in Experimental Medicine and Biology, vol 722. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0332-6_2

Download citation

Publish with us

Policies and ethics