Skip to main content

Structure and Mechanism of Eukaryotic Type IIA Topoisomerases

  • Chapter
  • First Online:
DNA Topoisomerases and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Type II topoisomerases maintain DNA superhelicity and disentangle chromosomal segments to support cell division and viability. These activities are carried out by an ATP-dependent, duplex strand-passage mechanism that relies on the transient and reversible enzyme-mediated cleavage of DNA. A wealth of biochemical and structural data on Top2 (topo II), the eukaryotic member of this topoisomerase family, as well as complementary studies on its bacterial counterparts (DNA gyrase and topo IV), has helped explain many essential features of this complex catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aravind, L., Leipe, D.D., and Koonin, E.V. (1998). Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res 26, 4205–4213.

    Google Scholar 

  • Baird, C.L., Harkins, T.T., Morris, S.K., and Lindsley, J.E. (1999). Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci USA 96, 13685–13690.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bates, A.D., and Maxwell, A. (2005). DNA topology, 2nd edn (Oxford ; New York, Oxford University Press).

    Google Scholar 

  • Bax, B.D., Chan, P.F., Eggleston, D.S., Fosberry, A., Gentry, D.R., Gorrec, F., Giordano, I., Hann, M.M., Hennessy, A., Hibbs, M., et al. (2010). Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466, 935–940.

    Article  PubMed  Google Scholar 

  • Berger, J.M., Fass, D., Wang, J.C., and Harrison, S.C. (1998). Structural similarities between topoisomerases that cleave one or both DNA strands. Proc Natl Acad Sci USA 95, 7876–7881.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berger, J.M., Gamblin, S.J., Harrison, S.C., and Wang, J.C. (1996). Structure and mechanism of DNA topoisomerase II. Nature 379, 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Bergerat, A., de Massy, B., Gadelle, D., Varoutas, P.C., Nicolas, A., and Forterre, P. (1997). An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386, 414–417.

    Article  CAS  PubMed  Google Scholar 

  • Bjergbaek, L., Kingma, P., Nielsen, I.S., Wang, Y., Westergaard, O., Osheroff, N., and Andersen, A.H. (2000). Communication between the ATPase and cleavage/religation domains of human topoisomerase IIalpha. J Biol Chem 275, 13041–13048.

    Article  CAS  PubMed  Google Scholar 

  • Buck, G.R., and Zechiedrich, E.L. (2004). DNA disentangling by type-2 topoisomerases. J Mol Biol 340, 933–939.

    Article  CAS  PubMed  Google Scholar 

  • Caron, P., and Wang, J.C. (1994). Alignment of Primary Sequences of DNA Topoisomerases. In Advances in Pharmacology, L.F. Liu, ed. (Academic Press), pp. 271–291.

    Google Scholar 

  • Caron, P.R., Watt, P., and Wang, J.C. (1994). The C-terminal domain of Saccharomyces cerevisiae DNA topoisomerase II. Mol Cell Biol 14, 3197–3207.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Champoux, J.J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70, 369–413.

    Article  CAS  PubMed  Google Scholar 

  • Classen, S., Olland, S., and Berger, J.M. (2003). Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci USA 100, 10629–10634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corbett, A.H., Fernald, A.W., and Osheroff, N. (1993). Protein kinase C modulates the catalytic activity of topoisomerase II by enhancing the rate of ATP hydrolysis: evidence for a common mechanism of regulation by phosphorylation. Biochemistry 32, 2090–2097.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, A.H., Zechiedrich, E.L., and Osheroff, N. (1992). A role for the passage helix in the DNA cleavage reaction of eukaryotic topoisomerase II. A two-site model for enzyme-mediated DNA cleavage. J Biol Chem 267, 683–686.

    CAS  PubMed  Google Scholar 

  • Corbett, K.D., Benedetti, P., and Berger, J.M. (2007). Holoenzyme assembly and ATP-mediated conformational dynamics of topoisomerase VI. Nat Struct Mol Biol 14, 611–619.

    CAS  PubMed  Google Scholar 

  • Corbett, K.D., and Berger, J.M. (2004). Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases. Annu Rev Biophys Biomol Struct 33, 95–118.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, K.D., and Berger, J.M. (2005). Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI. Structure 13, 873–882.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, K.D., Schoeffler, A.J., Thomsen, N.D., and Berger, J.M. (2005). The structural basis for substrate specificity in DNA topoisomerase IV. J Mol Biol 351, 545–561.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, K.D., Shultzaberger, R.K., and Berger, J.M. (2004). The C-terminal domain of DNA gyrase A adopts a DNA-bending beta-pinwheel fold. Proc Natl Acad Sci USA 101, 7293–7298.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deweese, J.E., Guengerich, F.P., Burgin, A.B., and Osheroff, N. (2009). Metal ion interactions in the DNA cleavage/ligation active site of human topoisomerase IIalpha. Biochemistry 48, 8940–8947.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deweese, J.E., and Osheroff, N. (2009a). Coordinating the two protomer active sites of human topoisomerase IIalpha: nicks as topoisomerase II poisons. Biochemistry 48, 1439–1441.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deweese, J.E., and Osheroff, N. (2009b). The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 37, 738–748.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dong, K.C., and Berger, J.M. (2007). Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450, 1201–1205.

    Article  CAS  PubMed  Google Scholar 

  • Dutta, R., and Inouye, M. (2000). GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25, 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Fass, D., Bogden, C.E., and Berger, J.M. (1999). Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nat Struct Biol 6, 322–326.

    Article  CAS  PubMed  Google Scholar 

  • Forterre, P., Gribaldo, S., Gadelle, D., and Serre, M.C. (2007). Origin and evolution of DNA topoisomerases. Biochimie 89, 427–446.

    Article  CAS  PubMed  Google Scholar 

  • Gellert, M., Mizuuchi, K., O’Dea, M.H., and Nash, H.A. (1976). DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci USA 73, 3872–3876.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goto, T., Laipis, P., and Wang, J.C. (1984). The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. J Biol Chem 259, 10422–10429.

    CAS  PubMed  Google Scholar 

  • Horowitz, D.S., and Wang, J.C. (1987). Mapping the active site tyrosine of Escherichia coli DNA gyrase. J Biol Chem 262, 5339–5344.

    CAS  PubMed  Google Scholar 

  • Hu, T., Chang, S., and Hsieh, T. (1998). Identifying Lys359 as a critical residue for the ATP-dependent reactions of Drosophila DNA topoisomerase II. J Biol Chem 273, 9586–9592.

    Article  CAS  PubMed  Google Scholar 

  • Kingma, P.S., Corbett, A.H., Burcham, P.C., Marnett, L.J., and Osheroff, N. (1995). Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II. DNA lesions as endogenous topoisomerase II poisons. J Biol Chem 270, 21441–21444.

    Article  CAS  PubMed  Google Scholar 

  • Kingma, P.S., and Osheroff, N. (1997). Spontaneous DNA damage stimulates topoisomerase II-mediated DNA cleavage. J Biol Chem 272, 7488–7493.

    Article  CAS  PubMed  Google Scholar 

  • Kirchhausen, T., Wang, J.C., and Harrison, S.C. (1985). DNA gyrase and its complexes with DNA: direct observation by electron microscopy. Cell 41, 933–943.

    Article  CAS  PubMed  Google Scholar 

  • Klenin, K., Langowski, J., and Vologodskii, A. (2002). Computational analysis of the chiral action of type II DNA topoisomerases. J Mol Biol 320, 359–367.

    Article  CAS  PubMed  Google Scholar 

  • Kurz, E.U., Leader, K.B., Kroll, D.J., Clark, M., and Gieseler, F. (2000). Modulation of human DNA topoisomerase IIalpha function by interaction with 14-3-3epsilon. J Biol Chem 275, 13948–13954.

    Article  CAS  PubMed  Google Scholar 

  • Lamour, V., Hoermann, L., Jeltsch, J.M., Oudet, P., and Moras, D. (2002). An open conformation of the Thermus thermophilus gyrase B ATP-binding domain. J Biol Chem 277, 18947–18953.

    Article  CAS  PubMed  Google Scholar 

  • Laponogov, I., Pan, X.S., Veselkov, D.A., McAuley, K.E., Fisher, L.M., and Sanderson, M.R. (2010). Structural basis of gate-DNA breakage and resealing by type II topoisomerases. PLoS ONE 5, e11338.

    Article  PubMed Central  PubMed  Google Scholar 

  • Laponogov, I., Sohi, M.K., Veselkov, D.A., Pan, X.S., Sawhney, R., Thompson, A.W., McAuley, K.E., Fisher, L.M., and Sanderson, M.R. (2009). Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nat Struct Mol Biol 16, 667–669.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.P., Sander, M., and Hsieh, T. (1989). Nuclease protection by Drosophila DNA topoisomerase II. Enzyme/DNA contacts at the strong topoisomerase II cleavage sites. J Biol Chem 264, 21779–21787.

    CAS  PubMed  Google Scholar 

  • Lindsley, J.E., and Wang, J.C. (1991). Proteolysis patterns of epitopically labeled yeast DNA topoisomerase II suggest an allosteric transition in the enzyme induced by ATP binding. Proc Natl Acad Sci USA 88, 10485–10489.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindsley, J.E., and Wang, J.C. (1993a). On the coupling between ATP usage and DNA transport by yeast DNA topoisomerase II. J Biol Chem 268, 8096–8104.

    CAS  PubMed  Google Scholar 

  • Lindsley, J.E., and Wang, J.C. (1993b). Study of Allosteric Communication Between Protomers by Immunotagging. Nature 361, 749–750.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L.F., Liu, C.C., and Alberts, B.M. (1979). T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature 281, 456–461.

    Article  CAS  PubMed  Google Scholar 

  • Liu, L.F., Rowe, T.C., Yang, L., Tewey, K.M., and Chen, G.L. (1983). Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem 258, 15365–15370.

    CAS  PubMed  Google Scholar 

  • Liu, L.F., and Wang, J.C. (1987). Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84, 7024–7027.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, Z., Deibler, R.W., Chan, H.S., and Zechiedrich, L. (2009). The why and how of DNA unlinking. Nucleic Acids Res 37, 661–671.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lynn, R., Giaever, G., Swanberg, S.L., and Wang, J.C. (1986). Tandem regions of yeast DNA topoisomerase II share homology with different subunits of bacterial gyrase. Science 233, 647–649.

    Article  CAS  PubMed  Google Scholar 

  • McClendon, A.K., Gentry, A.C., Dickey, J.S., Brinch, M., Bendsen, S., Andersen, A.H., and Osheroff, N. (2008). Bimodal recognition of DNA geometry by human topoisomerase II alpha: preferential relaxation of positively supercoiled DNA requires elements in the C-terminal domain. Biochemistry 47, 13169–13178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McClendon, A.K., Rodriguez, A.C., and Osheroff, N. (2005). Human topoisomerase IIalpha rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J Biol Chem 280, 39337–39345.

    Article  CAS  PubMed  Google Scholar 

  • Miller, K.G., Liu, L.F., and Englund, P.T. (1981). A homogeneous type II DNA topoisomerase from HeLa cell nuclei. J Biol Chem 256, 9334–9339.

    CAS  PubMed  Google Scholar 

  • Mizuuchi, K., O’Dea, M.H., and Gellert, M. (1978). DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc Natl Acad Sci USA 75, 5960–5963.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moore, C.L., Klevan, L., Wang, J.C., and Griffith, J.D. (1983). Gyrase:DNA Complexes Visualized as Looped Structures by Electron Microscopy. J Biol Chem 258, 4612–4617.

    CAS  PubMed  Google Scholar 

  • Morais Cabral, J.H., Jackson, A.P., Smith, C.V., Shikotra, N., Maxwell, A., and Liddington, R.C. (1997). Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 388, 903–906.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, A., and Cozzarelli, N.R. (1979). Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17, 175–184.

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Planitz, F., and Herschlag, D. (2006). Interdomain communication in DNA topoisomerase II. DNA binding and enzyme activation. J Biol Chem 281, 23395–23404.

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Planitz, F., and Herschlag, D. (2007). DNA topoisomerase II selects DNA cleavage sites based on reactivity rather than binding affinity. Nucleic Acids Res 35, 3764–3773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noble, C.G., and Maxwell, A. (2002). The role of GyrB in the DNA cleavage-religation reaction of DNA gyrase: a proposed two metal-ion mechanism. J Mol Biol 318, 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Osheroff, N. (1986). Eukaryotic topoisomerase II. Characterization of enzyme turnover. J Biol Chem 261, 9944–9950.

    CAS  PubMed  Google Scholar 

  • Osheroff, N. (1987). Role of the divalent cation in topoisomerase II mediated reactions. Biochemistry 26, 6402–6406.

    Article  CAS  PubMed  Google Scholar 

  • Postow, L., Crisona, N.J., Peter, B.J., Hardy, C.D., and Cozzarelli, N.R. (2001). Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci USA 98, 8219–8226.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pruss, G.J., and Drlica, K. (1989). DNA supercoiling and prokaryotic transcription. Cell 56, 521–523.

    Article  CAS  PubMed  Google Scholar 

  • Reece, R.J., and Maxwell, A. (1991). The C-terminal domain of the Escherichia coli DNA gyrase A subunit is a DNA-binding protein. Nucleic Acids Res 19, 1399–1405.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roca, J., Berger, J.M., Harrison, S.C., and Wang, J.C. (1996). DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci USA 93, 4057–4062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roca, J., Berger, J.M., and Wang, J.C. (1993). On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices. J Biol Chem 268, 14250–14255.

    CAS  PubMed  Google Scholar 

  • Roca, J., Ishida, R., Berger, J.M., Andoh, T., and Wang, J.C. (1994). Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci USA 91, 1781–1785.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roca, J., and Wang, J.C. (1992). The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell 71, 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Roca, J., and Wang, J.C. (1994). DNA transport by a type II DNA topoisomerase: evidence in favor of a two gate mechanism. Cell 77, 609–616.

    Google Scholar 

  • Rybenkov, V.V., Ullsperger, C., Vologodskii, A.V., and Cozzarelli, N.R. (1997). Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–693.

    Article  CAS  PubMed  Google Scholar 

  • Sahyoun, N., Wolf, M., Besterman, J., Hsieh, T., Sander, M., LeVine, H., 3 rd, Chang, K.J., and Cuatrecasas, P. (1986). Protein kinase C phosphorylates topoisomerase II: topoisomerase activation and its possible role in phorbol ester-induced differentiation of HL-60 cells. Proc Natl Acad Sci USA 83, 1603–1607.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sander, M., and Hsieh, T. (1983). Double strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem 258, 8421–8428.

    CAS  PubMed  Google Scholar 

  • Schmidt, B.H., Burgin, A.B., Deweese, J.E., Osheroff, N., and Berger, J.M. (2010). A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 465, 641–644.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoeffler, A.J., and Berger, J.M. (2008). DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q Rev Biophys 41, 41–101.

    CAS  PubMed  Google Scholar 

  • Schultz, P., Olland, S., Oudet, P., and Hancock, R. (1996). Structure and conformational changes of DNA topoisomerase II visualized by electron microscopy. Proc Natl Acad Sci 93, 5936–5940.

    Google Scholar 

  • Shiozaki, K., and Yanagida, M. (1992). Functional dissection of the phosphorylated termini of fission yeast DNA topoisomerase II. J Cell Biol 119, 1023–1036.

    Article  CAS  PubMed  Google Scholar 

  • Sissi, C., Chemello, A., Vazquez, E., Mitchenall, L.A., Maxwell, A., and Palumbo, M. (2008). DNA gyrase requires DNA for effective two-site coordination of divalent metal ions: further insight into the mechanism of enzyme action. Biochemistry 47, 8538–8545.

    Article  CAS  PubMed  Google Scholar 

  • Staudenbauer, W.L., and Orr, E. (1981). DNA gyrase: affinity chromatography on novobiocin-Sepharose and catalytic properties. Nucleic Acids Res 9, 3589–3603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steitz, T.A., and Steitz, J.A. (1993). A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci USA 90, 6498–6502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stone, M.D., Bryant, Z., Crisona, N.J., Smith, S.B., Vologodskii, A., Bustamante, C., and Cozzarelli, N.R. (2003). Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc Natl Acad Sci USA 100, 8654–8659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stuchinskaya, T., Mitchenall, L.A., Schoeffler, A.J., Corbett, K.D., Berger, J.M., Bates, A.D., and Maxwell, A. (2009). How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases. J Mol Biol 385, 1397–1408.

    Article  CAS  PubMed  Google Scholar 

  • Sugino, A., Higgins, N.P., and Cozzarelli, N.R. (1980). DNA gyrase subunit stoichiometry and the covalent attachment of subunit A to DNA during DNA cleavage. Nucleic Acids Res 8, 3865–3874.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura, J.K., and Gellert, M. (1990). Characterization of the ATP binding site on Escherichia coli DNA gyrase. Affinity labeling of Lys-103 and Lys-110 of the B subunit by pyridoxal 5′-diphospho-5′-adenosine. J Biol Chem 265, 21342–21349.

    CAS  PubMed  Google Scholar 

  • Trigueros, S., Salceda, J., Bermudez, I., Fernandez, X., and Roca, J. (2004). Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology. J Mol Biol 335, 723–731.

    Article  CAS  PubMed  Google Scholar 

  • Uemura, T., Morikawa, K., and Yanagida, M. (1986). The nucleotide sequence of the fission yeast DNA topoisomerase II gene: structural and functional relationships to other DNA topoisomerases. Embo J 5, 2355–2361.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, J.C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3, 430–440.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J.C. (2009). Untangling the double helix : DNA entanglement and the action of the DNA topoisomerases (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).

    Google Scholar 

  • Wei, H., Ruthenburg, A.J., Bechis, S.K., and Verdine, G.L. (2005). Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. J Biol Chem 280, 37041–37047.

    Article  CAS  PubMed  Google Scholar 

  • West, K.L., Meczes, E.L., Thorn, R., Turnbull, R.M., Marshall, R., and Austin, C.A. (2000). Mutagenesis of E477 or K505 in the B’ domain of human topoisomerase II beta increases the requirement for magnesium ions during strand passage. Biochemistry 39, 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  • Wigley, D.B., Davies, G.J., Dodson, E.J., Maxwell, A., and Dodson, G. (1991). Crystal structure of an N-terminal fragment of the DNA gyrase B protein. Nature 351, 624–629.

    Article  CAS  PubMed  Google Scholar 

  • Williams, N.L., and Maxwell, A. (1999a). Locking the DNA gate of DNA gyrase: investigating the effects on DNA cleavage and ATP hydrolysis. Biochemistry 38, 14157–14164.

    Article  CAS  PubMed  Google Scholar 

  • Williams, N.L., and Maxwell, A. (1999b). Probing the two-gate mechanism of DNA gyrase using cysteine cross-linking. Biochemistry 38, 13502–13511.

    Article  CAS  PubMed  Google Scholar 

  • Wohlkonig, A., Chan, P.F., Fosberry, A.P., Homes, P., Huang, J., Kranz, M., Leydon, V.R., Miles, T.J., Pearson, N.D., Perera, R.L., et al. (2010). Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance. Nat Struct Mol Biol 17, 1152–1153.

    Article  CAS  PubMed  Google Scholar 

  • Worland, S.T., and Wang, J.C. (1989). Inducible overexpression, purification, and active site mapping of DNA topoisomerase II from the yeast Saccharomyces cerevisiae. J Biol Chem 264, 4412–4416.

    CAS  PubMed  Google Scholar 

  • Yamane, K., Wu, X., and Chen, J. (2002). A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol Cell Biol 22, 555–566.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan, J., Magnasco, M.O., and Marko, J.F. (1999). A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401, 932–935.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Lee, J.Y., and Nowotny, M. (2006). Making and breaking nucleic acids: two-Mg2+−ion catalysis and substrate specificity. Mol Cell 22, 5–13.

    Article  CAS  PubMed  Google Scholar 

  • Zechiedrich, E.L., and Osheroff, N. (1990). Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. Embo J 9, 4555–4562.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Karl Drlica for critical reading and helpful comments on this chapter. This work was supported by the NCI (CA077373, to JMB) and NIGMS (GM033944, to NO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James M. Berger or Neil Osheroff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Berger, J.M., Osheroff, N. (2012). Structure and Mechanism of Eukaryotic Type IIA Topoisomerases. In: Pommier, Y. (eds) DNA Topoisomerases and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0323-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0323-4_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0322-7

  • Online ISBN: 978-1-4614-0323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics