Skip to main content

Ubiquitin and Ubiquitin-Like Proteins in Repair of Topoisomerase-Mediated DNA Damage

  • Chapter
  • First Online:
Book cover DNA Topoisomerases and Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1210 Accesses

Abstract

Topoisomerases are enzymes involved in various cellular DNA transactions (Chen and Liu 1994; Li and Liu 2001; Pommier 1996; Wang 2002) (see Chaps. 1–5). The main function of all topoisomerases is to dissipate the torsional stress (supercoiling of the DNA) generated during DNA transactions such as transcription, replication, chromosome condensation, and segregation (Castano et al. 1996; Champoux 2001; Leppard and Champoux 2005; Zhang et al. 1988, 2000). To date, four type I DNA topoisomerases have been identified and characterized in human cells: nuclear Top1 (Top1) (Liu 1983; Wang 2002), mitochondrial topoisomerase (Top1mt) (Zhang et al. 2001), Top3α (Li and Wang 1998), and Top3β (Wilson et al. 2000) (see Chap. 1). Two type II human topoisomerases have been identified: Top2α and Top2β (Nitiss 2009a). Human topoisomerase I (Top1) is a type IB topoisomerase (forms 3′-phosphotyrosyl linkage with DNA) that functions as a swivel in DNA replication, RNA transcription, and chromosome condensation and segregation (Champoux 2001; Liu 1983). Human Top3α (Top3α) is a type IA (forms 5′-DNA tyrosyl linkages) topoisomerase and is essential for early embryogenesis, as evidenced by mouse knockout studies (Li and Wang 1998). Human Top3β is also a type 1A topoisomerase; although the Top3β knockout mouse develops to maturity, its mean lifespan is reduced (Kwan and Wang 2001). Thus, it appears that Top3α and β do not complement each other despite of their very similar enzymatic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostinho M, Santos V, Ferreira F, Costa R, Cardoso J, Pinheiro I, Rino J, Jaffray E, Hay RT, Ferreira J (2008) Conjugation of human topoisomerase 2 alpha with small ubiquitin-like modifiers 2/3 in response to topoisomerase inhibitors: cell cycle stage and chromosome domain specificity. Cancer Res 68(7): 2409–2418

    Article  CAS  PubMed  Google Scholar 

  • Alexandre S, Rast C, Nguyen-Ba G, Vasseur P (2000) Detection of apoptosis induced by topoisomerase inhibitors and serum deprivation in syrian hamster embryo cells. Exp Cell Res 255(1): 30–39

    Article  CAS  PubMed  Google Scholar 

  • Andersen JB, Hassel BA (2006) The interferon regulated ubiquitin-like protein, ISG15, in tumorigenesis: friend or foe? Cytokine Growth Factor Rev 17(6): 411–421

    Article  CAS  PubMed  Google Scholar 

  • Anderson AH, Sorensen BS, Christiansen K, Svejstrup JQ, Lund K, Westergaard O (1991) Studies of the topoisomerase II-mediated cleavage and religation reactions by use of a suicidal double-stranded DNA substrate. J Biol Chem 266(14): 9203–9210

    CAS  PubMed  Google Scholar 

  • Arimoto K, Konishi H, Shimotohno K (2008) UbcH8 regulates ubiquitin and ISG15 conjugation to RIG-I. Mol Immunol 45(4): 1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Arnaoutov A, Anan T, Dasso M (2005) PIASy mediates SUMO-2 conjugation of Topoisomerase-II on mitotic chromosomes. Embo J 24(12): 2172–2182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163(3): 477–487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92(3): 367–380

    Article  CAS  PubMed  Google Scholar 

  • Beidler DR, Cheng YC (1995) Camptothecin induction of a time- and concentration-dependent decrease of topoisomerase I and its implication in camptothecin activity. Mol Pharmacol 47(5): 907–914

    CAS  PubMed  Google Scholar 

  • Bendixen C, Thomsen B, Alsner J, Westergaard O (1990) Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription. Biochemistry 29(23): 5613–5619

    Article  CAS  PubMed  Google Scholar 

  • Bracarda S, Eggermont AM, Samuelsson J (2009) Redefining the role of interferon in the treatment of malignant diseases. Eur J Cancer

    Google Scholar 

  • Buschmann T, Fuchs SY, Lee CG, Pan ZQ, Ronai Z (2000) SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53. Cell 101(7): 753–762

    Article  CAS  PubMed  Google Scholar 

  • Castano IB, Brzoska PM, Sadoff BU, Chen H, Christman MF (1996) Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev 10(20): 2564–2576

    Article  CAS  PubMed  Google Scholar 

  • Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70: 369–413

    Article  CAS  PubMed  Google Scholar 

  • Chang JY, Dethlefsen LA, Barley LR, Zhou BS, Cheng YC (1992) Characterization of camptothecin-resistant Chinese hamster lung cells. Biochem Pharmacol 43(11): 2443–2452

    Article  CAS  PubMed  Google Scholar 

  • Chen AY, Liu LF (1994) DNA topoisomerases: essential enzymes and lethal targets. Annu RevPharmacolToxicol 34: 191–218

    CAS  Google Scholar 

  • Chen X, Ding B, LeJeune D, Ruggiero C, Li S (2009) Rpb1 sumoylation in response to UV radiation or transcriptional impairment in yeast. PLoS One 4(4): e5267

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen XL, Silver HR, Xiong L, Belichenko I, Adegite C, Johnson ES (2007) Topoisomerase I-dependent viability loss in saccharomyces cerevisiae mutants defective in both SUMO conjugation and DNA repair. Genetics 177(1): 17–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin LS, Vavalle JP, Li L (2002) Staring, a novel E3 ubiquitin-protein ligase that targets syntaxin 1 for degradation. J Biol Chem 277(38): 35071–35079

    Article  CAS  PubMed  Google Scholar 

  • Christensen MO, Krokowski RM, Barthelmes HU, Hock R, Boege F, Mielke C (2004) Distinct effects of topoisomerase I and RNA polymerase I inhibitors suggest a dual mechanism of nucleolar/nucleoplasmic partitioning of topoisomerase I. J Biol Chem 279(21): 21873–21882

    Article  CAS  PubMed  Google Scholar 

  • Chung CH, Baek SH (1999) Deubiquitinating enzymes: their diversity and emerging roles. Biochem Biophys Res Commun 266(3): 633–640

    Article  CAS  PubMed  Google Scholar 

  • D’Arpa P, Beardmore C, Liu LF (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50(21): 6919–6924

    PubMed  Google Scholar 

  • D’Cunha J, Knight E, Jr., Haas AL, Truitt RL, Borden EC (1996) Immunoregulatory properties of ISG15, an interferon-induced cytokine. Proc Natl Acad Sci USA 93(1): 211–215

    Article  PubMed Central  PubMed  Google Scholar 

  • Danks MK, Garrett KE, Marion RC, Whipple DO (1996) Subcellular redistribution of DNA topoisomerase I in anaplastic astrocytoma cells treated with topotecan. Cancer Res 56(7): 1664–1673

    CAS  PubMed  Google Scholar 

  • Davis PL, Shaiu WL, Scott GL, Iglehart JD, Hsieh TS, Marks JR (1998) Complex response of breast epithelial cell lines to topoisomerase inhibitors. Anticancer Res 18(4C): 2919–2932

    CAS  PubMed  Google Scholar 

  • Dawlaty MM, Malureanu L, Jeganathan KB, Kao E, Sustmann C, Tahk S, Shuai K, Grosschedl R, van Deursen JM (2008) Resolution of sister centromeres requires RanBP2-mediated SUMOylation of topoisomerase IIalpha. Cell 133(1): 103–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Debethune L, Kohlhagen G, Grandas A, Pommier Y (2002) Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Res 30(5): 1198–1204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desai SD, Haas AL, Wood LM, Tsai YC, Pestka S, Rubin EH, Saleem A, Nur EKA, Liu LF (2006) Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 66(2): 921–928

    Article  CAS  PubMed  Google Scholar 

  • Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF (2001) Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res 61(15): 5926–5932

    CAS  PubMed  Google Scholar 

  • Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P (1997) Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem 272(39): 24159–24164

    Article  CAS  PubMed  Google Scholar 

  • Desai SD, Mao Y, Sun M, Li TK, Wu J, Liu LF (2000) Ubiquitin, SUMO-1, and UCRP in camptothecin sensitivity and resistance. Ann NY Acad Sci 922: 306–308

    Article  CAS  PubMed  Google Scholar 

  • Desai SD, Wood LM, Tsai YC, Hsieh TS, Marks JR, Scott GL, Giovanella BC, Liu LF (2008) ISG15 as a novel tumor biomarker for drug sensitivity. Mol Cancer Ther 7(6): 1430–1439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desai SD, Zhang H, Rodriguez-Bauman A, Yang JM, Wu X, Gounder MK, Rubin EH, Liu LF (2003) Transcription-dependent degradation of topoisomerase I-DNA covalent complexes. Mol Cell Biol 23(7): 2341–2350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2(2): 233–239

    Article  CAS  PubMed  Google Scholar 

  • Dev KK, van der Putten H, Sommer B, Rovelli G (2003) Part I: parkin-associated proteins and Parkinson’s disease. Neuropharmacology 45(1): 1–13

    Article  CAS  PubMed  Google Scholar 

  • Deweese JE, Osheroff N (2009) The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res 37(3): 738–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dexheimer TS, Antony S, Marchand C, Pommier Y (2008) Tyrosyl-DNA phosphodiesterase as a target for anticancer therapy. Anticancer Agents Med Chem 8(4): 381–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferrier V (2002) Getting hit by SUMO. NatCell Biol 4(3): E57

    CAS  Google Scholar 

  • Fiorani P, Reid RJ, Schepis A, Jacquiau HR, Guo H, Thimmaiah P, Benedetti P, Bjornsti MA (2004) The deubiquitinating enzyme Doa4p protects cells from DNA topoisomerase I poisons. J Biol Chem 279(20): 21271–21281

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Kim SW, Chen HX, Grill S, Cheng YC (1999) Degradation of topoisomerase I induced by topoisomerase I inhibitors is dependent on inhibitor structure but independent of cell death. Mol Pharmacol 55(4): 677–683

    CAS  PubMed  Google Scholar 

  • Geoffroy MC, Hay RT (2009) An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10(8): 564–568

    Article  CAS  PubMed  Google Scholar 

  • Giannakopoulos NV, Luo JK, Papov V, Zou W, Lenschow DJ, Jacobs BS, Borden EC, Li J, Virgin HW, Zhang DE (2005) Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem Biophys Res Commun

    Google Scholar 

  • Ha BH, Kim EE (2008) Structures of proteases for ubiqutin and ubiquitin-like modifiers. BMB Rep 41(6): 435–443

    Article  CAS  PubMed  Google Scholar 

  • Haas AL (1997) Introduction: evolving roles for ubiquitin in cellular regulation. FASEB J 11(13): 1053–1054

    CAS  PubMed  Google Scholar 

  • Haas AL, Ahrens P, Bright PM, Ankel H (1987) Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J Biol Chem 262(23): 11315–11323

    CAS  PubMed  Google Scholar 

  • Haas AL, Siepmann TJ (1997) Pathways of ubiquitin conjugation. FASEB J 11(14): 1257–1268

    CAS  PubMed  Google Scholar 

  • Hamerman JA, Hayashi F, Schroeder LA, Gygi SP, Haas AL, Hampson L, Coughlin P, Aebersold R, Aderem A (2002) Serpin 2a is induced in activated macrophages and conjugates to a ubiquitin homolog. J Immunol 168(5): 2415–2423

    Article  CAS  PubMed  Google Scholar 

  • Hammer E, Heilbronn R, Weger S (2007) The E3 ligase Topors induces the accumulation of polysumoylated forms of DNA topoisomerase I in vitro and in vivo. FEBS Lett 581(28): 5418–5424

    Article  CAS  PubMed  Google Scholar 

  • Harty RN, Pitha PM, Okumura A (2009) Antiviral Activity of Innate Immune Protein ISG15. J Innate Immun 1(5): 397–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hay RT (2001) Protein modification by SUMO. Trends Biochem Sci 26(5): 332–333

    Article  CAS  PubMed  Google Scholar 

  • Hay RT (2006) Role of ubiquitin-like proteins in transcriptional regulation. Ernst Schering Res Found Workshop(57): 173–192

    Google Scholar 

  • Herrmann J, Lerman LO, Lerman A (2007) Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res 100(9): 1276–1291

    Article  CAS  PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1992) The ubiquitin system for protein degradation. Annu Rev Biochem 61: 761–807

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser M (1996) Protein degradation or regulation: Ub the judge. Cell 84(6): 813–815

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser M (2000a) Biochemistry. All in the ubiquitin family. Science 289(5479): 563–564

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser M (2000b) Evolution and function of ubiquitin-like protein-conjugation systems. NatCell Biol 2(8): E153-E157

    CAS  Google Scholar 

  • Hochstrasser M (2001) SP-RING for SUMO: new functions bloom for a ubiquitin-like protein. Cell 107(1): 5–8

    Article  CAS  PubMed  Google Scholar 

  • Holm C, Covey JM, Kerrigan D, Pommier Y (1989) Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res 49: 6365–6368

    CAS  PubMed  Google Scholar 

  • Horie K, Tomida A, Sugimoto Y, Yasugi T, Yoshikawa H, Taketani Y, Tsuruo T (2002) SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 21(52): 7913–7922

    Article  CAS  PubMed  Google Scholar 

  • Hoyt MA, Zhang M, Coffino P (2003) Ubiquitin-independent mechanisms of mouse ornithine decarboxylase degradation are conserved between mammalian and fungal cells. J Biol Chem 278(14): 12135–12143

    Article  CAS  PubMed  Google Scholar 

  • Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27): 14873–14878

    CAS  PubMed  Google Scholar 

  • Hsiang YH, Lihou MG, Liu LF (1989) Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 49(18): 5077–5082

    CAS  PubMed  Google Scholar 

  • Hsiang YH, Liu LF (1988) Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res 48(7): 1722–1726

    CAS  PubMed  Google Scholar 

  • Hsiang YH, Liu LF (1989) Evidence for the reversibility of cellular DNA lesion induced by mammalian topoisomerase II poisons. J Biol Chem 264(17): 9713–9715

    CAS  PubMed  Google Scholar 

  • Huang KC, Gao H, Yamasaki EF, Grabowski DR, Liu S, Shen LL, Chan KK, Ganapathi R, Snapka RM (2001) Topoisomerase II poisoning by ICRF-193. J Biol Chem 276(48): 44488–44494

    Article  CAS  PubMed  Google Scholar 

  • Huang RY, Kowalski D, Minderman H, Gandhi N, Johnson ES (2007) Small ubiquitin-related modifier pathway is a major determinant of doxorubicin cytotoxicity in Saccharomyces cerevisiae. Cancer Res 67(2): 765–772

    Article  CAS  PubMed  Google Scholar 

  • Interthal H, Chen HJ, Champoux JJ (2005) Human Tdp1 cleaves a broad spectrum of substrates including phosphoamide linkages. J Biol Chem 280(Oct 28): 36518–36528

    Google Scholar 

  • Isik S, Sano K, Tsutsui K, Seki M, Enomoto T, Saitoh H (2003) The SUMO pathway is required for selective degradation of DNA topoisomerase IIbeta induced by a catalytic inhibitor ICRF-193(1). FEBS Lett 546(2–3): 374–378

    Article  CAS  PubMed  Google Scholar 

  • Jacquiau HR, van Waardenburg RC, Reid RJ, Woo MH, Guo H, Johnson ES, Bjornsti MA (2005) Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 280(25): 23566–23575

    Article  CAS  PubMed  Google Scholar 

  • Jentsch S, Pyrowolakis G (2000) Ubiquitin and its kin: how close are the family ties? Trends Cell Biol 10(8): 335–342

    Article  CAS  PubMed  Google Scholar 

  • Johnson GA, Austin KJ, Van Kirk EA, Hansen TR (1998) Pregnancy and interferon-tau induce conjugation of bovine ubiquitin cross-reactive protein to cytosolic uterine proteins. Biol Reprod 58(4): 898–904

    Article  CAS  PubMed  Google Scholar 

  • Kanagasabai R, Liu S, Salama S, Yamasaki EF, Zhang L, Greenchurch KB, Snapka RM (2009) Ubiquitin-family modifications of topoisomerase I in camptothecin-treated human breast cancer cells. Biochemistry 48(14): 3176–3185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim KI, Giannakopoulos NV, Virgin HW, Zhang DE (2004) Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol Cell Biol 24(21): 9592–9600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kobayashi I, Ohwada S, Maemura M (1996) Interferon-alpha potentiates the antiproliferative activity of CPT-11 against human colon cancer xenografts in nude mice. Anticancer Res 16(5A): 2677–2680

    CAS  PubMed  Google Scholar 

  • Kumar S, Kao WH, Howley PM (1997) Physical interaction between specific E2 and Hect E3 enzymes determines functional cooperativity. J Biol Chem 272(21): 13548–13554

    Article  CAS  PubMed  Google Scholar 

  • Kunzi MS, Pitha PM (2003) Interferon targeted genes in host defense. Autoimmunity 36(8): 457–461

    Article  CAS  PubMed  Google Scholar 

  • Kwan KY, Wang JC (2001) Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. Proc Natl Acad Sci USA 98(10): 5717–5721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ledesma FC, El Khamisy SF, Zuma MC, Osborn K, Caldecott KW (2009) A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature 461(7264): 674–678

    Article  CAS  Google Scholar 

  • Leppard JB, Champoux JJ (2005) Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114(2): 75–85

    Article  CAS  PubMed  Google Scholar 

  • Li TK, Chen AY, Yu C, Mao Y, Wang H, Liu LF (1999) Activation of topoisomerase II-mediated excision of chromosomal DNA loops during oxidative stress. Genes Dev 13(12): 1553–1560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li TK, Liu LF (2001) Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41: 53–77

    Article  PubMed  Google Scholar 

  • Li W, Wang JC (1998) Mammalian DNA topoisomerase IIIalpha is essential in early embryogenesis. Proc Natl Acad Sci USA 95(3): 1010–1013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin CP, Ban Y, Lyu YL, Desai SD, Liu LF (2008) A ubiquitin-proteasome pathway for the repair of topoisomerase I-DNA covalent complexes. J Biol Chem 283(30): 21074–21083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin CP, Ban Y, Lyu YL, Liu LF (2009) Proteasome-dependent processing of topoisomerase I-DNA adducts into DNA double strand breaks at arrested replication forks. J Biol Chem 284(41): 28084–28092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu LF (1983) DNA topoisomerases--enzymes that catalyse the breaking and rejoining of DNA. CRC Crit Rev Biochem 15(1): 1–24

    Article  CAS  PubMed  Google Scholar 

  • Liu LF (1989) DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58: 351–375

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Duann P, Lin CT, D’Arpa P, Wu J (1996) Mechanism of action of camptothecin. Ann NY Acad Sci 803: 44–49

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Hummer BT, Li X, Hassel BA (2004) Camptothecin induces the ubiquitin-like protein, ISG15, and enhances ISG15 conjugation in response to interferon. J Interferon Cytokine Res 24(11): 647–654

    Article  CAS  PubMed  Google Scholar 

  • Loeb KR, Haas AL (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267(11): 7806–7813

    CAS  PubMed  Google Scholar 

  • Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE (2002) UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J Biol Chem 277(12): 9976–9981

    Article  CAS  PubMed  Google Scholar 

  • Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 17(4): 455–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mao Y, Desai SD, Liu LF (2000a) SUMO-1 conjugation to human DNA topoisomerase II isozymes. J Biol Chem 275(34): 26066–26073

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Desai SD, Ting CY, Hwang J, Liu LF (2001) 26S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem 276(44): 40652–40658

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Sun M, Desai SD, Liu LF (2000b) SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci USA 97(8): 4046–4051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mo YY, Yu Y, Shen Z, Beck WT (2002) Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 277(4): 2958–2964

    Article  CAS  PubMed  Google Scholar 

  • Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134(3): 757–770

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Kogame T, Oshiumi H, Shinohara A, Sumitomo Y, Agama K, Pommier Y, Tsutsui KM, Tsutsui K, Hartsuiker E, Ogi T, Takeda S, Taniguchi Y (2010) Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair. PLoS Genet 6(1): e1000828

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Narasimhan J, Potter JL, Haas AL (1996) Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J Biol Chem 271(1): 324–330

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan J, Wang M, Fu Z, Klein JM, Haas AL, Kim JJ (2005) Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J Biol Chem 280(29): 27356–27365

    Article  CAS  PubMed  Google Scholar 

  • Nitiss J, Wang JC (1988) DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85(20): 7501–7505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitiss JL (2002) DNA topoisomerases in cancer chemotherapy: using enzymes to generate selective DNA damage. Curr Opin Investig Drugs 3(10): 1512–1516

    CAS  PubMed  Google Scholar 

  • Nitiss JL (2009a) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9(5): 327–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitiss JL (2009b) Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 9(5): 338–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nitiss JL, Liu YX, Harbury P, Jannatipour M, Wasserman R, Wang JC (1992) Amsacrine and etoposide hypersensitivity of yeast cells overexpressing DNA topoisomerase II. Cancer Res 52(16): 4467–4472

    CAS  PubMed  Google Scholar 

  • Nitiss JL, Nitiss KC (2001) Yeast systems for demonstrating the targets of anti-topoisomerase II agents. Methods Mol Biol 95: 315–327

    CAS  PubMed  Google Scholar 

  • Nitiss JL, Wang JC (1996) Mechanisms of cell killing by drugs that trap covalent complexes between DNA topoisomerases and DNA. Mol Pharmacol 50(5): 1095–1102

    CAS  PubMed  Google Scholar 

  • Nitiss KC, Malik M, He X, White SW, Nitiss JL (2006) Tyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damage. Proc Natl Acad Sci USA 103(24): 8953–8958

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohwada S, Kobayashi I, Maemura M, Satoh Y, Ogawa T, Iino Y, Morishita Y (1996) Interferon potentiates antiproliferative activity of CPT-11 against human colon cancer xenografts. Cancer Lett 110(1–2): 149–154

    Article  CAS  PubMed  Google Scholar 

  • Okumura A, Pitha PM, Harty RN (2008) ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci USA 105(10): 3974–3979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer A, Mason GG, Paramio JM, Knecht E, Rivett AJ (1994) Changes in proteasome localization during the cell cycle. Eur J Cell Biol 64(1): 163–175

    CAS  PubMed  Google Scholar 

  • Papa FR, Hochstrasser M (1993) The yeast DOA4 gene encodes a deubiquitinating enzyme related to a product of the human tre-2 oncogene. Nature 366(6453): 313–319

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2000) Ubiquitin in chains. Trends Biochem Sci 25(11): 544–548

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001a) Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001b) Ubiquitin enters the new millennium. Mol Cell 8(3): 499–504

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8(6): 610–616

    Article  CAS  PubMed  Google Scholar 

  • Pitha-Rowe I, Hassel BA, Dmitrovsky E (2004) Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J Biol Chem 279(18): 18178–18187

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y (1996) Eukaryotic DNA topoisomerase I: genome gatekeeper and its intruders, camptothecins. Semin Oncol 23(1 Suppl 3): 3–10

    CAS  PubMed  Google Scholar 

  • Pommier Y (1998) Diversity of DNA topoisomerases I and inhibitors. Biochimie 80(3): 255–270

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y (2006) Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6(10): 789–802

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y (2009) DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev 109(7): 2894–2902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pommier Y, Barcelo JM, Rao VA, Sordet O, Jobson AG, Thibaut L, Miao ZH, Seiler JA, Zhang H, Marchand C, Agama K, Nitiss JL, Redon C (2006) Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 81: 179–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pommier Y, Leo E, Zhang H, Marchand C (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5): 421–433

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y, Tanizawa A, Kohn KW (1994) Mechanisms of topoisomerase I inhibition by anticancer drugs. Adv Pharmacol 29B: 73–92

    Article  CAS  PubMed  Google Scholar 

  • Pourquier P, Jensen AD, Gong SS, Pommier Y, Rogler CE (1999) Human DNA topoisomerase I-mediated cleavage and recombination of duck hepatitis B virus DNA in vitro. Nucleic Acids Res 27(8): 1919–1925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J, Liu LF, Lutzker S, Saleem A, Rubin EH (2004) Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 279(35): 36440–36444

    Article  CAS  PubMed  Google Scholar 

  • Rallabhandi P, Hashimoto K, Mo YY, Beck WT, Moitra PK, D’Arpa P (2002) Sumoylation of topoisomerase I is involved in its partitioning between nucleoli and nucleoplasm and its clearing from nucleoli in response to camptothecin. JBiolChem

    Google Scholar 

  • Rasheed ZA, Rubin EH (2003) Mechanisms of resistance to topoisomerase I-targeting drugs. Oncogene 22(47): 7296–7304

    Article  CAS  PubMed  Google Scholar 

  • Ritchie KJ, Zhang DE (2004) ISG15: the immunological kin of ubiquitin. Semin Cell Dev Biol 15(2): 237–246

    Article  CAS  PubMed  Google Scholar 

  • Rivett AJ (1998) Intracellular distribution of proteasomes. Curr Opin Immunol 10(1): 110–114

    Article  CAS  PubMed  Google Scholar 

  • Roca J, Ishida R, Berger JM, Andoh T, Wang JC (1994) Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci USA 91(5): 1781–1785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubin E, Wood V, Bharti A, Trites D, Lynch C, Hurwitz S, Bartel S, Levy S, Rosowsky A, Toppmeyer D,. (1995) A phase I and pharmacokinetic study of a new camptothecin derivative, 9- aminocamptothecin. Clin Cancer Res 1(3): 269–276

    CAS  PubMed  Google Scholar 

  • Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275(9): 6252–6258

    Article  CAS  PubMed  Google Scholar 

  • Saleem A, Edwards TK, Rasheed Z, Rubin EH (2000) Mechanisms of resistance to camptothecins. Ann NY Acad Sci 922: 46–55

    Article  CAS  PubMed  Google Scholar 

  • Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 49: 73–96

    Article  CAS  PubMed  Google Scholar 

  • Seeger M, Ferrell K, Dubiel W (1997) The 26S proteasome: a dynamic structure. Mol Biol Rep 24(1–2): 83–88

    Article  CAS  PubMed  Google Scholar 

  • Shao R-G, Cao C-X, Shimizu T, O’Connor P, Kohn KW, Pommier Y (1997) Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53. Cancer Res 57: 4029–4035

    CAS  PubMed  Google Scholar 

  • Shao R-G, Cao C-X, Zhang H, Kohn KW, Wold MS, Pommier Y (1999) Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18: 1397–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shea ME, Hiasa H (1999) Interactions between DNA helicases and frozen topoisomerase IV- quinolone-DNA ternary complexes. J Biol Chem 274(32): 22747–22754

    Article  CAS  PubMed  Google Scholar 

  • Siddoo-Atwal C, Haas AL, Rosin MP (1996) Elevation of interferon beta-inducible proteins in ataxia telangiectasia cells. Cancer Res 56(3): 443–447

    CAS  PubMed  Google Scholar 

  • Sordet O, Larochelle S, Nicolas E, Stevens EV, Zhang C, Shokat KM, Fisher RP, Pommier Y (2008) Hyperphosphorylation of RNA polymerase II in response to topoisomerase I cleavage complexes and its association with transcription- and BRCA1-dependent degradation of topoisomerase I. J Mol Biol 381(3): 540–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sordet O, Nakamura AJ, Redon CE, Pommier Y (2010) DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions. Cell Cycle 9(2): 274–278

    Article  CAS  PubMed  Google Scholar 

  • Sordet O, Redon CE, Guirouilh-Barbat J, Smith S, Solier S, Douarre C, Conti C, Nakamura AJ, Das BB, Nicolas E, Kohn KW, Bonner WM, Pommier Y (2009) Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep 10(8): 887–893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Staker BL, Feese MD, Cushman M, Pommier Y, Zembower D, Stewart L, Burgin AB (2005) Structures of three classes of anticancer agents bound to the human topoisomerase I-DNA covalent complex. J Med Chem 48(7): 2336–2345

    Article  CAS  PubMed  Google Scholar 

  • Strumberg D, Pilon AA, Smith M, Hickey R, Malkas L, Pommier Y (2000) Conversion of topoisomerase I cleavage complexes on the leading strand of ribosomal DNA into 5′-phosphorylated DNA double-strand breaks by replication runoff. Mol Cell Biol 20(11): 3977–3987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Subramanian D, Rosenstein BS, Muller MT (1998) Ultraviolet-induced DNA damage stimulates topoisomerase I-DNA complex formation in vivo: possible relationship with DNA repair. Cancer Res 58(5): 976–984

    CAS  PubMed  Google Scholar 

  • Svejstrup JQ, Christiansen K, Gromova, II, Andersen AH, Westergaard O (1991) New technique for uncoupling the cleavage and religation reactions of eukaryotic topoisomerase I. The mode of action of camptothecin at a specific recognition site. J Mol Biol 222(3): 669–678

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Iwahara S, Saeki Y, Sasajima H, Yokosawa H (2005) Link between the Ubiquitin Conjugation System and the ISG15 Conjugation System: ISG15 Conjugation to the UbcH6 Ubiquitin E2 Enzyme. J Biochem (Tokyo) 138(6): 711–719

    Article  CAS  Google Scholar 

  • Takeuchi T, Yokosawa H (2005) ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem Biophys Res Commun 336(1): 9–13

    Article  CAS  PubMed  Google Scholar 

  • Tanizawa A, Fujimori A, Fujimori Y, Pommier Y (1994) Comparison of topoisomerase I inhibition, DNA damage, and cytotoxicity of camptothecin derivatives presently in clinical trials. J Natl Cancer Inst 86: 836–842

    Article  CAS  PubMed  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5): 538–546

    Article  CAS  PubMed  Google Scholar 

  • Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19(1): 94–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsao YP, D’Arpa P, Liu LF (1992) The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 52(7): 1823–1829

    CAS  PubMed  Google Scholar 

  • Tsao YP, Russo A, Nyamuswa G, Silber R, Liu LF (1993) Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res 53(24): 5908–5914

    CAS  PubMed  Google Scholar 

  • Ulrich HD (2009) The SUMO system: an overview. Methods Mol Biol 497: 3–16

    Article  CAS  PubMed  Google Scholar 

  • Varshavsky A (1997) The ubiquitin system. Trends Biochem Sci 22(10): 383–387

    Article  CAS  PubMed  Google Scholar 

  • Wall ME, Wani MC (1996) Camptothecin. Discovery to clinic. Ann NY Acad Sci 803: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6): 430–440

    Article  CAS  PubMed  Google Scholar 

  • Weger S, Hammer E, Heilbronn R (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579(22): 5007–5012

    Article  CAS  PubMed  Google Scholar 

  • Weisshaar SR, Keusekotten K, Krause A, Horst C, Springer HM, Gottsche K, Dohmen RJ, Praefcke GJ (2008) Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 582(21–22): 3174–3178

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson KD (2009) DUBs at a glance. J Cell Sci 122(Pt 14): 2325–2329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson TM, Chen AD, Hsieh T (2000) Cloning and characterization of Drosophila topoisomerase IIIbeta. Relaxation of hypernegatively supercoiled DNA. J Biol Chem 275(3): 1533–1540

    Article  CAS  PubMed  Google Scholar 

  • Wood LM, Sankar S, Reed RE, Haas AL, Liu LF, McKinnon P, Desai SD (2011) A novel role for ATM in regulating proteasome-mediated protein degradation through suppression of the ISG15 conjugation pathway. PLoS ONE 6:e16422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Liu LF (1997) Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 25(21): 4181–4186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu K, Chen A, Pan ZQ (2000) Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J Biol Chem 275(41): 32317–32324

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Li TK, Yang JM, Liu LF (2003a) Acidic pH induces topoisomerase II-mediated DNA damage. Proc Natl Acad Sci USA 100(9): 5205–5210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao H, Mao Y, Desai SD, Zhou N, Ting CY, Hwang J, Liu LF (2003b) The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc Natl Acad Sci USA 100(6): 3239–3244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang M, Hsu CT, Ting CY, Liu LF, Hwang J (2006) Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 281(12): 8264–8274

    Article  CAS  PubMed  Google Scholar 

  • Yang S-W, Burgin AB, Huizenga BN, Robertson CA, Yao KC, Nash HA (1996) A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci USA 93: 11534–11539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Li W, Prescott ED, Burden SJ, Wang JC (2000) DNA topoisomerase IIbeta and neural development. Science 287(5450): 131–134

    Article  CAS  PubMed  Google Scholar 

  • Yeh ET, Gong L, Kamitani T (2000) Ubiquitin-like proteins: new wines in new bottles. Gene 248(1–2): 1–14

    Article  CAS  PubMed  Google Scholar 

  • Young P, Deveraux Q, Beal RE, Pickart CM, Rechsteiner M (1998) Characterization of two polyubiquitin binding sites in the 26S protease subunit 5a. J Biol Chem 273(10): 5461–5467

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Krug RM (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J 20(3): 362–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Z, Cortes-Ledesma F, El-Khamisy SF, Caldecott KW (2011) TDP2/TTRAP is the major 5′-tyrosyl DNA phosphodiesterase activity in vertebrate cells and is critical for cellular resistance to topoisomerase II-induced DNA damage. J Biol Chem 286: 403–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang CX, Chen AD, Gettel NJ, Hsieh TS (2000) Essential functions of DNA topoisomerase I in Drosophila melanogaster. Dev Biol 222(1): 27–40

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Barcelo JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, Pommier Y (2001) Human mitochondrial topoisomerase I. Proc Natl Acad Sci USA 98(19): 10608–10613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang H, Wang JC, Liu LF (1988) Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes. Proc Natl Acad Sci USA 85(4): 1060–1064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang HF, Tomida A, Koshimizu R, Ogiso Y, Lei S, Tsuruo T (2004) Cullin 3 promotes proteasomal degradation of the topoisomerase I-DNA covalent complex. Cancer Res 64(3): 1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Beaudenon SL, Kelley ML, Waddell MB, Yuan W, Schulman BA, Huibregtse JM, Krug RM (2004) The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc Natl Acad Sci USA 101(20): 7578–7582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou W, Papov V, Malakhova O, Kim KI, Dao C, Li J, Zhang DE (2005) ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem Biophys Res Commun 336(1): 61–68

    Article  CAS  PubMed  Google Scholar 

  • Zou W, Zhang DE (2006) The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J Biol Chem 281(7): 3989–3994

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal D. Desai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Desai, S.D. (2012). Ubiquitin and Ubiquitin-Like Proteins in Repair of Topoisomerase-Mediated DNA Damage. In: Pommier, Y. (eds) DNA Topoisomerases and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0323-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0323-4_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0322-7

  • Online ISBN: 978-1-4614-0323-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics