Interventional Neuroradiology

Chapter

Abstract

Since the first reports describing endovascular treatment of cerebral arteriovenous malformations 50 years ago [1], neuroendovascular technologies have continued to develop, advancing diagnosis of vascular abnormalities within the central nervous system, providing opportunities for treatment of previously inoperable brain and spinal cord lesions, and making possible minimally invasive alternatives for a variety of open neurosurgical therapies [2–4].

Keywords

Intraoperative neurophysiological monitoring Neuroendovascular surgery Neuromonitoring plan Neuro­monitoring Anesthetic management Motor-evoked potentials Somatosensory-evoked potentials 

References

  1. 1.
    Luessenhop AJ, Spence WT. Artificial embolization of cerebral arteries. Report of use in a case of arteriovenous malformation. JAMA. 1960;172:1153.CrossRefGoogle Scholar
  2. 2.
    Hopkins LN, Higashida RT, Piepgras DG. Perspectives on training standards in neuroendovascular therapeutics. Neurosurg Clin N Am. 2000;11(1):187–90.PubMedGoogle Scholar
  3. 3.
    Molyneux A, Kerr R, Stratton I, Sandercock P, Clarke M, Shrimpton J, et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomized trial. Lancet. 2002;360:1267–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Sala F, Niimi Y, Berenstein A, Deletis V. Neuroprotective role of neurophysiological monitoring during endovascular procedures in the spinal cord. Ann NY Acad Sci. 2001;939:126–36.PubMedCrossRefGoogle Scholar
  5. 5.
    Lopez JR, Chang SD, Steinberg GK. The use of electrophysiological monitoring in the intraoperative management of intracranial aneurysms. J Neurol Neurosurg Psychiatry. 1999;66(2):189–96.PubMedCrossRefGoogle Scholar
  6. 6.
    Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100:389–99.PubMedCrossRefGoogle Scholar
  7. 7.
    Parenti G, Marconi F, Fiori L. Electrophysiological (EEG-SSEP) monitoring during middle cerebral aneurysm surgery. J Neurosurg Sci. 1996;40:195–205.PubMedGoogle Scholar
  8. 8.
    Quinones-Hinojosa A, Alam M, Lyon R, Yingling CD, Lawton MT. Transcranial motor evoked potentials during basilar artery aneurysm surgery: technique application for 30 consecutive patients. Neurosurgery. 2004;54(4):916–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Schramm J, Koht A, Schmidt G, Pechstein U, Taniguchi M, Fahlbusch R. Surgical and electrophysiological observations during clipping of 134 aneurysms with evoked potential monitoring. Neurosurgery. 1990;26(1):61–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Sundt TM, Sharbrough FW, Anderson RE, Michenfelder JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg. 1974;41:310–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Suzuki K, Kodama N, Sasaki T, Matsumoto M, Konno Y, Sakuma J, et al. Intraoperative monitoring of blood flow insufficiency in the anterior choroidal artery during aneurysm surgery. J Neurosurg. 2003;98:507–14.PubMedCrossRefGoogle Scholar
  12. 12.
    Szelenyi A, Kothbauer K, Bueno de Camargo A, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57:331–8.Google Scholar
  13. 13.
    Schwartz DM, Sestokas AK. A systems-based algorithmic approach to intraoperative neurophysiological monitoring during spinal surgery. Semin Spine Surg. 2002;14(2):136–45.Google Scholar
  14. 14.
    Armonda RA, Thomas JE, Rosenwasser RH. The interventional neuroradiology suite as an operating room. Neurosurg Clin N Am. 2000;11(1):1–20.PubMedGoogle Scholar
  15. 15.
    Lam AM, Manninen PH, Ferguson GG, Nantau W. Monitoring electrophysiologic function during carotid endarterectomy: a comparison of somato­sensory evoked potentials and conventional electroencephalogram. Anesthesiology. 1991;75:15–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Deletis V, Isgum V, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 1. Recovery time of corticospinal tract direct waves elicited by pairs of transcranial electrical stimuli. Clin Neurophysiol. 2001;112:438–44.PubMedCrossRefGoogle Scholar
  17. 17.
    Deletis V, Rodi Z, Amassian VE. Neurophysiological mechanisms underlying motor evoked potentials in anesthetized humans. Part 2. Relationship between epidurally and muscle recorded MEPs in man. Clin Neurophysiol. 2001;112:445–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Toleikis JR. Intraoperative monitoring using somatosensory evoked potentials. A position statement by the American Society of Neurophysiological Monitoring. J Clin Monit Comput. 2005;19(3):241–58.PubMedCrossRefGoogle Scholar
  19. 19.
    Moller AR. Intraoperative neurophysiological monitoring. Totowa: Humana Press; 2006.Google Scholar
  20. 20.
    Schwartz DM, Drummond DS, Hahn M, Ecker ML, Dormans JP. Prevention of positional brachial plexopathy during surgical correction of scoliosis. J Spinal Disord. 2000;13(2):178–82.PubMedCrossRefGoogle Scholar
  21. 21.
    Schwartz DM, Sestokas AK, Hilibrand AS, Vaccaro AR, Bose B, Li M, et al. Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Monit Comput. 2006;20:437–44.PubMedCrossRefGoogle Scholar
  22. 22.
    Bhalodia VM, Sestokas AK, Tomak PR, Schwartz DM. Transcranial electric motor evoked potential detection of compressional peroneal nerve injury in the lateral decubitus position. J Clin Monit Comput. 2008;22:319–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Thomas JE, Armonda RA, Rosenwasser RH. Endosaccular thrombosis of cerebral aneurysms. Neurosurg Clin N Am. 2000;11(1):101–21.PubMedGoogle Scholar
  24. 24.
    DiCindio S, Schwartz DM. Anesthetic management for pediatric spinal fusion; implications of advances in spinal cord monitoring. Anesthesiol Clin North Am. 2005;23:765–87.CrossRefGoogle Scholar
  25. 25.
    Sloan TB. Anesthesia and motor evoked potential monitoring. In: Deletis V, Shils JL, editors. Neurophysiology in neurosurgery: a modern intraoperative approach. Philadelphia: Elsevier Science; 2002;451–74.Google Scholar
  26. 26.
    Sloan TB, Heyer EJ. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol. 2002;19(5):430–43.PubMedCrossRefGoogle Scholar
  27. 27.
    Sloan TB, Schwartz DM, Bell SD, Sestokas AK. Total intravenous anesthesia (TIVA) alternatives in the face of a propofol shortage. Am Soc Neurophysiol Monit Newsletter. 2009;17(6):3–8.Google Scholar
  28. 28.
    Jensen V, Rappaport BA. The reality of drug shortages – the case of the injectable agent propofol. N Engl J Med. 2010;363(9):806–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg. 2007;15:549–60.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Surgical Monitoring AssociatesSpringfieldUSA

Personalised recommendations