Intracranial AVM Surgery

  • Laura B. Hemmer
  • Carine Zeeni
  • Dhanesh K. Gupta


Arteriovenous malformations (AVMs) are tangled anastomoses of blood vessels in which arteriovenous shunting occurs in a central nidus (the area where feeding arteries converge and from which enlarged veins drain) [1, 2]. AVMs are the most common type of vascular malformation, with autopsy data suggesting an overall frequency of about 1–4% [3]. However, only about 12% of AVMs become symptomatic [1]. The mean age at presentation is 35 years old, and the majority present with intracranial hemorrhage (usually intracerebral hemorrhage) [1, 4]. There is an overall risk of initial hemorrhage of about 2–4% per year. The next most common presentation is seizure, followed by headache and focal neurological deficit [1]. In young children, presentation can also include congestive heart failure and hydrocephalus [3].


Intraoperative neurophysiological monitoring Intracranial arteriovenous malformation surgery Normal perfusion pressure breakthrough 


  1. 1.
    The Arteriovenous Malformation Study Group. Arteriovenous malformations of the brain in adults. N Engl J Med. 1999;340(23):1812–8.CrossRefGoogle Scholar
  2. 2.
    Doppman JL. The nidus concept of spinal cord arteriovenous malformations. A surgical recommendation based upon angiographic observations. Br J Radiol. 1971;44(526):758–63.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogilvy CS, Stieg PE, Awad I, et al. AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke. 2001;32(6):1458–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Al-Shahi R, Warlow C. A systematic review of the frequency and prognosis of arteriovenous malformations of the brain in adults. Brain. 2001;124(Pt 10):1900–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476–83.PubMedCrossRefGoogle Scholar
  6. 6.
    Chang SD, Marcellus ML, Marks MP, Levy RP, Do HM, Steinberg GK. Multimodality treatment of giant intracranial arteriovenous malformations. Neurosurgery. 2003;53(1):1–11; discussion 11–13.Google Scholar
  7. 7.
    Batjer HH, Duckworth EAM. Selected Drake teachings: an affectionate look back and a look forward – the Charles G. Drake Lecture: 2006. Neurosurgery. 2006;65(2):360–71.CrossRefGoogle Scholar
  8. 8.
    Drummond JC, Patel PM. Neurosurgical anesthesia. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingston; 2009. p. 2048–9, 2066–7.Google Scholar
  9. 9.
    Cole CD, Gottfried ON, Gupta DK, Couldwell WT. Total intravenous anesthesia: advantages for intracranial surgery. Neurosurgery. 2007;61(5 Suppl 2):369–77; discussion 377–378.Google Scholar
  10. 10.
    Zeeni C, Bebawy JF, Gupta DK, Koht A. Neuroanesthesia in hemorrhagic and ischemic stroke. In: Bendok BR, Batjer HH, Walker MT, Naidech AM, editors. Hemorrhagic and ischemic stroke: surgical, interventional, ­imaging, and medical approaches. 1st ed. New York: Thieme Medical Publishers; 2011.Google Scholar
  11. 11.
    Bloom MJ, Kofke WA, Nemoto E, Whitehurst S. Monitoring for cerebrovascular surgery. Int Anesthesiol Clin. 1996;34(3):137–47.PubMedCrossRefGoogle Scholar
  12. 12.
    Lopez JR. Neurophysiologic intraoperative monitoring of pediatric cerebrovascular surgery. J Clin Neurophysiol. 2009;26(2):85–94.PubMedCrossRefGoogle Scholar
  13. 13.
    Weinzierl MR, Reinacher P, Gilsbach JM, Rohde V. Combined motor and somatosensory evoked potentials for intraoperative monitoring: intra- and postoperative data in a series of 69 operations. Neurosurg Rev. 2007;30(2):109–16; discussion 116.Google Scholar
  14. 14.
    Neuloh G, Schramm J. Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg. 2004;100(3):389–99.PubMedCrossRefGoogle Scholar
  15. 15.
    Horiuchi K, Suzuki K, Sasaki T, et al. Intraoperative monitoring of blood flow insufficiency during surgery of middle cerebral artery aneurysms. J Neurosurg. 2005;103(2):275–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Manninen PH, Patterson S, Lam AM, Gelb AW, Nantau WE. Evoked potential monitoring during posterior fossa aneurysm surgery: a comparison of two modalities. Can J Anaesth. 1994;41(2):92–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Szelenyi A, Kothbauer K, de Camargo AB, Langer D, Flamm ES, Deletis V. Motor evoked potential monitoring during cerebral aneurysm surgery: technical aspects and comparison of transcranial and direct cortical stimulation. Neurosurgery. 2005;57(4 Suppl):331–8; discussion 331–8.Google Scholar
  19. 19.
    Tanaka S, Takanashi J, Fujii K, Ujiie H, Hori T. Motor evoked potential mapping and monitoring by direct brainstem stimulation. Technical note. J Neurosurg. 2007;107(5):1053–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20(5):347–77.PubMedCrossRefGoogle Scholar
  21. 21.
    Rothwell J, Burke D, Hicks R, Stephen J, Woodforth I, Crawford M. Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. J Physiol. 1994;481(Pt 1):243–50.PubMedGoogle Scholar
  22. 22.
    Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.PubMedCrossRefGoogle Scholar
  23. 23.
    Takagi Y, Kikuta K, Nozaki K, Sawamura K, Hashimoto N. Detection of a residual nidus by surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography in a child with a cerebral arteriovenous malformation. J Neurosurg. 2007;107(5 Suppl):416–8.PubMedGoogle Scholar
  24. 24.
    Killory BD, Nakaji P, Gonzales LF, Ponce FA, Wait SD, Spetzler RF. Prospective evaluation of surgical microscope-integrated intraoperative ­near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery. Neurosurgery. 2009;65(3):456–62; discussion 462.Google Scholar
  25. 25.
    Jameson LC, Sloan TB. Monitoring of the brain and spinal cord. Anesthesiol Clin. 2006;24(4):777–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Andrews RJ, Bringas JR. A review of brain retraction and recommendations for minimizing intraoperative brain injury. Neurosurgery. 1993;33(6):1052–63; discussion 1063–1064.Google Scholar
  27. 27.
    Lyon R, Lieberman JA, Grabovac MT, Hu S. Strategies for managing decreased motor evoked potential signals while distracting the spine during correction of scoliosis. J Neurosurg Anesthesiol. 2004;16(2):167–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Jameson LC, Janik DJ, Sloan TB. Electrophysiologic monitoring in neuro­surgery. Anesthesiol Clin. 2007;25(3):605–30, x.Google Scholar
  29. 29.
    Seubert CN, Mahla ME. Neurologic monitoring. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingston; 2009. p. 1483.Google Scholar
  30. 30.
    Souter MJ, Lam AM. Neurocritical care. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. 7th ed. Philadelphia: Churchill Livingston; 2009. p. 2899–900.Google Scholar
  31. 31.
    Al-Rodhan NR, Sundt Jr TM, Piepgras DG, Nichols DA, Rufenacht D, Stevens LN. Occlusive hyperemia: a theory for the hemodynamic complications following resection of intracerebral arteriovenous malformations. J Neurosurg. 1993;78(2):167–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Wilson CB, Hieshima G. Occlusive hyperemia: a new way to think about an old problem. J Neurosurg. 1993;78(2):165–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang LP, Paech MJ. Neuroanesthesia for the pregnant woman. Anesth Analg. 2008;107(1):193–200.PubMedCrossRefGoogle Scholar
  34. 34.
    Young WL, Kader A, Pile-Spellman J, Ornstein E, Stein BM. Arteriovenous malformation draining vein physiology and determinants of transnidal pressure gradients. The Columbia University AVM Study Project. Neurosurgery. 1994;35(3):389–95; discussion 395–396.Google Scholar
  35. 35.
    Finnerty JJ, Chisholm CA, Chapple H, Login IS, Pinkerton JV. Cerebral arteriovenous malformation in pregnancy: presentation and neurologic, obstetric, and ethical significance. Am J Obstet Gynecol. 1999;181(2):296–303.PubMedCrossRefGoogle Scholar
  36. 36.
    Pastor J, Pulido P, Lopez A, Sola RG. Monitoring of motor and somatosensory systems in a 26-week pregnant woman. Acta Neurochir (Wien). 2010;152(7):1231–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laura B. Hemmer
    • 1
  • Carine Zeeni
    • 2
  • Dhanesh K. Gupta
    • 3
  1. 1.Department of AnesthesiologyNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of AnesthesiologyAmerican University of Beirut Medical CenterBeirutLebanon
  3. 3.Departments of Anesthesiology & Neurological SurgeryNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations