Advertisement

Nanoduct Fluid Flow

  • Percival McCormackEmail author
Chapter
  • 642 Downloads
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

Nanoducts are unique in that fluid moving through them has intense vorticity, or molecular spin. In such regions of fluid flow, the molecular theory of fluids must be used to model the flow region and the physical properties of the fluid. Such properties change significantly in the presence of intense vorticity. These topics have been dealt with in Chap. 3 under the heading of the Nano-boundary Layer, using Waldman’s kinetic theory for a fluid of rotating and translating molecules.

Keywords

Shear Rate Knudsen Number Slip Length Slip Boundary Condition Knudsen Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Israelachvili, J.: Intermolecular and Surface Forces. Academic, New York (1992)Google Scholar
  2. 2.
    Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)Google Scholar
  3. 3.
    Behrens, S.H., Grier, D.G.: The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Priez, N., Troian, S.M.: Influence of wall roughness on slip behaviour. J. Fluid Mech. 554, 25–46 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Huang, P., Breuer, K.S.: Direct measurement of slip length in electrolyte solutions. Phys. Fluids 19, 028104 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Thompson, P., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Matthews, M.T., Hill, J.M.: Nano boundary layer equation with non-linear navier boundary condition. J. Math. Anal. Appl. 333, 381 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gubskaya, A.V., Kusalik, P.G.: The total molecular dipole moment for liquid water. J. Chem. Phys. 117, 5290–5302 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Mashl, R.J.: Anomalously immobilized water: a new phase induced by confinement in nanotubes. Nano Lett. 3, 589–592 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Waghe, A.J.C., Rasaiah, J.C., Hummer, G.: Filling and emptying kinetics of carbon nanotubers in water. J. Chem. Phys. 117, 10789–10795 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Gordillo, M.C., Marti, J.: Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 329, 341–345 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Yen, T.H., Soong, C.Y., Tzeng, P.Y.: Hybrid molecular dynamics continuum simulation for nano/mesoscale channel flows. Microfluid. Nanofluidics 3, 665–675 (2007)CrossRefGoogle Scholar
  14. 14.
    Hansen, J.S., Ottesen, J.T.: Molecular simulation of oscillatory flows in microfluidic channels. Microfluid. Nanofluidics 2, 301 (2006)CrossRefGoogle Scholar
  15. 15.
    Bruus, H.: Theoretical Microfluidics. Oxford University Press, New York (2008)Google Scholar
  16. 16.
    Travis, K.P., Gubbins, K.E.: Poiseuille flow in narrow slit pores. J. Chem. Phys. 112, 1984–1994 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    Hansen, J.S., et al.: Local linear viscoelasticity of confined fluids. J. Chem. Phys. 126, 144706 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, Mineola (1984)Google Scholar
  19. 19.
    Hansen, J.S., Daivis, P.J., Dodd, B.D.: Molecular spin in nano-confined fluidic flows. Microfluid. Nanofluidics 6, 785–795 (2009)CrossRefGoogle Scholar
  20. 20.
    Heinz, W.F., Hoh, J.H.: Spatially resolved force microscopy of biological surfaces using the AFM. Trends Biotechnol. 17, 143–150 (1999)CrossRefGoogle Scholar
  21. 21.
    Derjaguin, B.V., et al.: Investigations of the forces of interactions of surfaces in different media and the problem of colloid stability. Discuss. Faraday Soc. 18, 24–41 (1954)CrossRefGoogle Scholar
  22. 22.
    Raviv, U., Klein, J.: Fluidity of bound hydration layers. Science 297, 1540–1543 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Raviv, U., et al.: Lubrication by charged polymers. Nature 425, 1540–1543 (2003)CrossRefGoogle Scholar
  24. 24.
    Wanless, E.J., Christenson, H.K.: Interaction between surfaces in ethanol. J. Chem. Phys. 101, 4260–4267 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Mugele, F., Salmeron, M.: Frictional properties of thin chain alcohol films. J. Chem. Phys. 114, 1831–1836 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Israelachvili, J., et al.: Liquid dynamics in molecularly thin film. J. Phys. Condens. Matter 2, SA89–SA98 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    Israelachvili, J.N., et al.: Dynamic properties of molecularly thin films. Science 240, 189–191 (1988)ADSCrossRefGoogle Scholar
  28. 28.
    Vinogradova, O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31–60 (1999)CrossRefGoogle Scholar
  29. 29.
    Froberg, J.C., et al.: Surface force and measuring techniques. Int. J. Miner. Process. 56, 1–30 (1999)CrossRefGoogle Scholar
  30. 30.
    Schoen, M., et al.: Shear forces in molecularly thin films. Science 245, 1223–1225 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    Succi, S.: The Lattice Boltzman Equation. Oxford University Press, Oxford (2001)Google Scholar
  32. 32.
    Tas, N.R., et al.: Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 3(11), 1537–1540 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Imre, A., Martinas, K., Rebelo, L.P.N.: Thermodynamics of negative pressures in liquids. J. Non-equilib.Thermodyn. 23(4), 351–375 (1998)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Mercury, L., et al.: Thermodynamic properties of solutions in metastable systems. Geochim. Cosmochim. Acta. 67(10), 1769–1785 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Zhu, Y., Granick, S.: Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87(9), 096105 (2001)ADSCrossRefGoogle Scholar
  36. 36.
    de Gennes, P.-G.: On fluid/wall slippage. Langmuir 18, 3413–3414 (2002)CrossRefGoogle Scholar
  37. 37.
    Kalra, A., Garda, S., Hummer, G.: Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A. 100(18), 13770–13773 (2003)CrossRefGoogle Scholar
  38. 38.
    Bakajin, O.B., et al.: Electrodynamic stretching of DNA in confined environments. Phys. Rev. Lett. 80(12), 2737–2740 (1998)ADSCrossRefGoogle Scholar
  39. 39.
    Bao, G.: Mechanics of biomolecules. J. Mech. Phys. Solids 50(11), 2237–2274 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    Lykema, J.: Surface conduction. J. Phys. Condens. Matter 13(21), 5027–5034 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Stein, D.: Surface-charged-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93(3), 035901 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Fievet, P., et al.: Evaluation of 3 methods for the characterization of membrane-solution interface. J. Membr. Sci. 168(1–2), 87–100 (2000)CrossRefGoogle Scholar
  43. 43.
    Sun, D.D.: The influence of the fixed negative charges on mechanical and electrical behaviours in articular cartilage under unconfined compression. J. Biomech. Eng. 126(1), 6–16 (2004)CrossRefGoogle Scholar
  44. 44.
    Bethansen, L., et al.: Plasma disappearance of glycated and non-glycated albumin in diabetes mellitus. Diabetologia 36(4), 361–363 (1993)CrossRefGoogle Scholar
  45. 45.
    Ku, J.R., Stroeve, P.: Protein diffusion in charged nanotubes: on-off behaviour of molecular transport. Langmuir 20(5), 2030–2032 (2004)CrossRefGoogle Scholar
  46. 46.
    Pu, Q.S., et al.: Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4(6), 1099–1103 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Probstein, R.F.: Physicochemical Hydro-dynamics: An Introduction, 2nd edn. Wiley, New York (1994)CrossRefGoogle Scholar
  48. 48.
    Strick, T., et al.: Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74(1–2), 115–140 (2000)CrossRefGoogle Scholar
  49. 49.
    Muthukumar, M., Baumgartner, A.: Effects of entropic barriers on polymer dynamics. Macromolecules 22, 1937–1946 (1989)ADSCrossRefGoogle Scholar
  50. 50.
    Han, J., et al.: Entropic trapping and escape of long DNA molecules. Phys. Rev. Lett. 83(8), 1688–1691 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    Tegenfeldt, J.O.: Stretching DNA in nanochannels. Biophys. J. 86(1, pt 2), 596A (2004)Google Scholar
  52. 52.
    Tajkhorshid, E.: Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567), 525–530 (2002)ADSCrossRefGoogle Scholar
  53. 53.
    Iler, R.K.: The Chemistry of Silica. Wiley, New York (1979)Google Scholar
  54. 54.
    Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Percival McCormack 2012

Authors and Affiliations

  1. 1.Department of BioEngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations