The Vortex

  • Percival McCormackEmail author
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)


The first notable works on fluid motions appeared in the early seventeenth century. Descartes in his “Principia Philosophiae” (1644) considered that space was filled with frictional vortices, so that the planets are carried along by the vortex motions. Vortices had fascinated mankind for many centuries before Descartes. It was considered that life had started in the water of the primeval vortex – in whirlwinds and whirlpools.


Vortex Ring Stagnation Point Vortex Line Vortex Tube Point Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Homer: The Odyssey. Translated by E.V. Rieu. Penguin Classics (1946)Google Scholar
  2. 2.
    deSantillana, G., von Dechend, H.: Hamlet’s Mill. Gambit, Ipswich, MA (1969)Google Scholar
  3. 3.
    Robinson, J.M.: An Introduction to Early Greek Philosophers. Houghton Mifflin, Boston (1968)Google Scholar
  4. 4.
    Fierz, M.: Vorlosungen zur Entwicklungsgeschichte der Mech-anik, Lecture Notes in Physics, vol. 15. Springer, New York (1972)Google Scholar
  5. 5.
    Grant, E. (ed.): A Source Book in Medical Science. Harvard University, Cambridge, MA (1974)Google Scholar
  6. 6.
    Leonardo da Vinci: Del Moto e Mesura deli aqua. In: Carusi, E., Favaro, A. (eds.) Nicola Zanichelli, Bologna (1923)Google Scholar
  7. 7.
    Aiton, E.J.: The Vortex Theory of Planetary Motions. American Elsevier, New York (1972)zbMATHGoogle Scholar
  8. 8.
    Whittaker, E.: A History of the Theories of Aether and Electricity, vol. 1. Harper Torchbooks, New York (1960)Google Scholar
  9. 9.
    Lorentz, E.N.: The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization, Geneva (1967)Google Scholar
  10. 10.
    Wegener, A.: Wind-und Wasserhosen. Vieweg, Braunschweig, Germany (1917)Google Scholar
  11. 11.
    Truesdell, C.: Essays in the History of Mechanics. Springer, New York (1968)zbMATHGoogle Scholar
  12. 12.
    Schlichting, H.: Boundary Layer Theory. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Thompson, W.: Mathematical and Physical Papers, vol. 6. Cambridge University Press, Cambridge (1910)Google Scholar
  14. 14.
    Silliman, R.H.: William Thompson: Smoke Rings and 19th Century Atomism, Isis, vol. 54, p. 461 (1963)Google Scholar
  15. 15.
    Pauli, P.J.: Vortices and Vibrations: The Rise and Fall of a Scientific Research Program, M.A. Thesis, University of Maryland (1975)Google Scholar
  16. 16.
    Serrin, J.: Handbuck der Physik, vol. 8/1, p. 152. Springer, Berlin (1959)Google Scholar
  17. 17.
    Greenspan, H.P.: The Theory of Rotating Fluids. Cambridge University Press, New York (1963)Google Scholar
  18. 18.
    Lin, C.C.: Hydrodynamic Stability. Cambridge University Press, New York (1955)zbMATHGoogle Scholar
  19. 19.
    Rosenhead, L.: Laminar Boundary Layers. Oxford University Press, New York (1963)zbMATHGoogle Scholar
  20. 20.
    Hinze, J.O.: Turbulence. McGraw-Hill, New York (1975)Google Scholar
  21. 21.
    Goldsten, S.: Fluid mechanics in the first half of this century. Ann. Rev. Fluid Mech. 1, 1–28 (1969)ADSCrossRefGoogle Scholar
  22. 22.
    Rotumo, R.: Tornadoes and tornadogenesis. In: Mesoscale Meteorology (1986)Google Scholar
  23. 23.
    Lighthill, M.J.: On sound generated aerodynamically. Proc. Roy. Soc. Lond. A 211, 564 (1952)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Powell, A.: Theory of vortex sound. J. Acoust. Soc. Am. 36, 564 (1964)Google Scholar
  25. 25.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco, CA (1973)Google Scholar
  26. 26.
    Stone, E.C., Lane, A.L.: Voyager encounter with the jovian system. Science 204, 945 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    Stone, E.C., Lane, A.L.: Voyager 2. Science 206, 925 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    Problems of Cosmical Aerodynamics. Proceedings of a Symposium on Motion of Gaseous Masses of Cosmical Dimensions. Central Air Documents Office (1951)Google Scholar
  29. 29.
    Slettebak, A. (ed.): Stellar Rotation. Gordon and Breach, New York (1970)Google Scholar
  30. 30.
    Baker, A.: Finite Element CFD. McGraw-Hill, New York (1985)Google Scholar
  31. 31.
    Gunzburger, M., Nicolaides, R. (eds.): Incompressible CFD. Cambridge University Press, New York (1993)Google Scholar
  32. 32.
    Roache, P.: Computational Fluid Dynamics. Hermosa, Albuquerque, New Mexico (1976)Google Scholar
  33. 33.
    Chorin, A.J.: Vortex models and boundary layer instability. SIAM J. Sci. Stat. Comput. 1, 1–21 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Chorin, A.J.: The evolution of a turbulent vortex. Commun. Math. Phys. 35, 517–535 (1982)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    Leonard, A.: Vortex methods in flow simulation. J. Comput. Phys. 37, 289–335 (1980)MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Leonard, A.: Computing 3D flows with vortex elements. Am. Rev. Fluid Mech. 17, 523–559 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    Tisza, L.: Phys. Rad. 1, p. 165 (1940)Google Scholar
  38. 38.
    Landau, L.: J. Phys. (Moscow) 11, p. 91 (1948)Google Scholar
  39. 39.
    London, F.: Superfluids, vol. 2. Wiley, New York (1954)zbMATHGoogle Scholar
  40. 40.
    Onsager, L.: Nuovo Cimento 6, p. 249 (1949)Google Scholar
  41. 41.
    Feynmann, R.P.: In: Porter, C.J. (ed.) Progress in Low Temperature Physics, vol. 1. North-Holland, Amsterdam (1955) ( Chapter 2)
  42. 42.
    Belitz, D.: In: Lynn, J.W. (ed.) High Temperature Superconductivity. Springer, Berlin (1990) (Chapter 2)Google Scholar
  43. 43.
    Buzdin, A.J.: Phys. Rev. B 47, p. 11416 (1993)Google Scholar
  44. 44.
    Lund, F., Regge, T.: Unified approach to strings and vortices with soliton solution. Phys. Rev. D 14, 1524 (1976)MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    Windmill, S.E.: The structure and dynamics of vortex filaments. Ann. Rev. Fluid Mech. 7, 141 (1075)ADSGoogle Scholar
  46. 46.
    Love, A.E.H.: Stabilitat von Ringwirbeln. Encycl. Math. Wiss. Teubner Verlag, Leipzig. Band 4, Teil 3, 86 (1901)Google Scholar
  47. 47.
    McCormack, P.D., Crane, L.: Physical Fluid Dynamics. Academic, New York (1971)Google Scholar
  48. 48.
    von Karman, T., Burgers, J.M.: General aerodynamic theory – perfect fluids. In: Durand, W.F. (ed.) Aerodynamic Theory, vol. 2. Dover, New York (1963)Google Scholar
  49. 49.
    Stananway, S., Shariff, K., Hussan, F.: Head on Collisions of Two Vortex Rings, TR CTR-S88. Center for Turbulence Research, Stanford, CA (1988)Google Scholar
  50. 50.
    Saffman, P.G.: The velocity of a viscous vortex ring. Stud. Appl. Math. 49, 371–389 (1970)zbMATHGoogle Scholar
  51. 51.
    Stananway, S., Cantwell, B.J., Spalart, P.R.: Navier–Stokes Simulations of Axisymmetric Vortex Rings, AIAA Paper No. 88-0318 (1988)Google Scholar
  52. 52.
    Lugt, H.J.: Vortex Flow in Nature and Technology. Wiley, New York (1983)Google Scholar
  53. 53.
    Gibbs-Smith, C.H.: The Invention of the Aeroplane. Taplinger, New York (1966)Google Scholar
  54. 54.
    Wegener, P.P.: What Makes Aeroplanes Fly. Springer, New York (1991)Google Scholar
  55. 55.
    Prandtl, L.: Tragflugeltheorie. Nach. KGes. Wiss. Gottingen, Math. Phys. Kl, 15 (1918)Google Scholar
  56. 56.
    Muller, U. et al.: The Wing Section Theory of Kutta and Joukowsky (1979)Google Scholar
  57. 57.
    Breslin, J.A., Adersen, P.: Hydrodynamics of Ships Propellers. Cambridge University Press, New York (1994)Google Scholar
  58. 58.
    Stong, C.L.: Scientific American, October. p. 141 (1971)Google Scholar
  59. 59.
    Shin, H.W., et al.: Circulation measurements and vortical structure in an inlet-vortex flow field. J. Fluid Mech. 162, 463–487 (1986)ADSCrossRefGoogle Scholar
  60. 60.
    Siervi, De, et al.: Mechanisms of inlet-vortex formation. J. Fluid Mech. 174, 173–207 (1982)CrossRefGoogle Scholar
  61. 61.
    Bearman, P.W., Zdravkovich, M.M.: Flow round a circular cylinder near a plane boundary. J. Fluid Mech. 89, 33–47 (1978)ADSCrossRefGoogle Scholar
  62. 62.
    Chen, G.T., et al.: Similarity analysis of compressor tip clearance flow structure. ASME J. Turbomach. 113, 260–271 (1991)CrossRefGoogle Scholar
  63. 63.
    Waitz, I., Greitzer, E., Tan, C.: Fluid vortices. In: Green, S.I. (ed.) Vortices in Aero-Propulsion Systems. Kluwer, Boston, MA (1995). Chapter 11Google Scholar
  64. 64.
    Horlock, J.H.: Axial Flow Compressors. R.E. Krieger, Malabar, FL (1973)Google Scholar
  65. 65.
    von Karman, T., Burgers, J.M.: Motion of a perfect fluid produced by external forces. In: Durand, W.F. (ed.) Sections A2–A5 of General Aerodynamic Theory – Perfect Fluids in Aerodynamic Theory, vol. 2. Dover, New York (1935).  Chapter 3 Google Scholar
  66. 66.
    O’Connor, N.F.: The Fujihara Effect. Weatherwise. October, p. 232 (1964)Google Scholar
  67. 67.
    Rosenhead, L.: Formation of vortices from a surface of discontinuity. Proc. Roy. Soc. Lond. A 134, 170 (1931)ADSCrossRefGoogle Scholar
  68. 68.
    Roberts, K.V., Christiansen, J.P.: Topics in CFD. In: Macleod, G.R. (ed.) The Impact of Computers on Physics, North-Holland, Amsterdam (1972)Google Scholar
  69. 69.
    Donnelly, R.J.: Experimental Superfluidity. University of Chicago Press (1967)Google Scholar
  70. 70.
    Allen, J.F., Finlayson, D., McCall, D. (eds.): Proceedings of Eleventh International conference on Low Temperature Physics, vol. 1. University of St. Andrews, Scotland (1968)Google Scholar
  71. 71.
    Yarmchuk, E.J., Gordon, M.V., Packard, R.E.: Observations of stationary vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214 (1979)ADSCrossRefGoogle Scholar
  72. 72.
    Ashton, R.A., Glaberson, W.I.: Phys. Rev. Lett. 42, p. 1062 (1979)Google Scholar
  73. 73.
    Schwartz, K.W.: Phys. Rev. Lett. 38, p. 551 (1977)Google Scholar
  74. 74.
    Daunt, J., Mendelssohn, K.: Proc. Roy. Soc. A 170, p. 423 (1939)Google Scholar
  75. 75.
    Allen, J., Misener, A.: Proc. Roy. Soc. A 173, p. 467 (1939)Google Scholar
  76. 76.
    Osborne, D.: Proc. Phys. Soc. A 63, p. 909 (1950)Google Scholar
  77. 77.
    Feynman, R.P.: Atomic theory of the two-fluid model of liquid helium. Phys. Rev. 94, 262 (1954)ADSzbMATHCrossRefGoogle Scholar
  78. 78.
    Khalatnikov, J.: Introduction to the Theory of Superfluidity. Benjamin and Coy, New York (1965)Google Scholar
  79. 79.
    Vinen, W.: Proc. Roy. Soc. A 260, p. 218 (1961)Google Scholar
  80. 80.
    Hess, G., Fairbank, W.: Proc. Int. Conf. Low Temp. Phys. 10th, Moscow (1966)Google Scholar
  81. 81.
    Kamerlingh Onnes, H.: Leiden Commun. vol. 120b, 122b, 124c (1911)Google Scholar
  82. 82.
    Bednorz, G., Muller, K.A.: Zeits. Phys. B 64, p. 189 (1986)Google Scholar
  83. 83.
    Meissner, W., Ochsenfeld, R.: Naturwissenschaften 21, p. 787 (1933)Google Scholar
  84. 84.
    London, F., London, H.: Proc. Roy. Soc. (Lond.) A 149, p. 71 (1935)Google Scholar
  85. 85.
    Ginsburg, V.L., Landau, L.: Zh. Eksp. Teor. Fiz. 20, p. 1064 (1950)Google Scholar
  86. 86.
    Poole, C.P., Farach, H.A., Creswick, R.J.: Superconductivity. Academic, New York (1995). p. 276Google Scholar
  87. 87.
    Cook, T.A.: The Curves of Life. Dover, New York (1979)Google Scholar
  88. 88.
    Kraft, C.F.: Life, a vortex phenomenon. Biodynamics 18(December), (1936)Google Scholar

Copyright information

© Percival McCormack 2012

Authors and Affiliations

  1. 1.Department of BioEngineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations