Skip to main content

Cancer Stem Cells, Models of Study and Implications of Therapy Resistance Mechanisms

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

There is now compelling evidence for tumour initiating or cancer stem cells (CSCs) in human cancers. The current evidence of this CSC hypothesis, the CSC phenotype and methods of identification, culture and in vitro modelling will be presented, with an emphasis on prostate cancer. Inherent in the CSC hypothesis is their dual role, as a tumour-initiating cell, and as a source of treatment-resistant cells; the mechanisms behind therapeutic resistance will be discussed. Such resistance is a consequence of the unique CSC phenotype, which differs from the differentiated progeny, which make up the bulk of a tumour. It seems that to target the whole tumour, employing traditional therapies to target bulk populations alongside targeted CSC-specific drugs, provides the best hope of lasting treatment or even cure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255(5505):197–200

    PubMed  CAS  Google Scholar 

  2. Chury Z, Tobiska J (1958) [Clinical findings & results of culture in a case of stem-cell leukemia with pluripotential properties of the stem cells.]. Neoplasma 5(3):220–231

    PubMed  CAS  Google Scholar 

  3. Furth J, Kahn MC (1937) The transmission of ­leukaemia of mice with a single cell. Am J Cancer 31:276–282

    Google Scholar 

  4. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197(4302):461–463

    PubMed  CAS  Google Scholar 

  5. Huntly BJ, Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5(4):311–321

    PubMed  CAS  Google Scholar 

  6. Houghton J et al (2007) Stem cells and cancer. Semin Cancer Biol 17(3):191–203

    PubMed  CAS  Google Scholar 

  7. Lee JT, Herlyn M (2007) Old disease, new culprit: tumor stem cells in cancer. J Cell Physiol 213(3):603–609

    PubMed  CAS  Google Scholar 

  8. Polyak K, Hahn WC (2006) Roots and stems: stem cells in cancer. Nat Med 12(3):296–300

    PubMed  CAS  Google Scholar 

  9. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea–a paradigm shift. Cancer Res 66(4):1883–1890, discussion 1895–1896

    PubMed  CAS  Google Scholar 

  10. Farrell A et al (2006) Nature milestones: cancer. Nat 440: S7–S23

    Google Scholar 

  11. Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648

    PubMed  CAS  Google Scholar 

  12. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    PubMed  CAS  Google Scholar 

  13. Matsui W et al (2004) Characterization of clonogenic multiple myeloma cells. Blood 103(6):2332–2336

    PubMed  CAS  Google Scholar 

  14. Castor A et al (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11(6):630–637

    PubMed  CAS  Google Scholar 

  15. Cox CV et al (2004) Characterization of acute ­lymphoblastic leukemia progenitor cells. Blood 104(9):2919–2925

    PubMed  CAS  Google Scholar 

  16. Cox CV et al (2007) Characterization of a progenitor cell population in childhood T-cell acute lymphoblastic leukemia. Blood 109(2):674–682

    PubMed  CAS  Google Scholar 

  17. Ricci-Vitiani L et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115

    PubMed  CAS  Google Scholar 

  18. Al-Hajj M et al (2004) Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 14(1):43–47

    PubMed  CAS  Google Scholar 

  19. Collins AT et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946–10951

    PubMed  CAS  Google Scholar 

  20. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  21. Singh SK et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    PubMed  CAS  Google Scholar 

  22. Chan KS et al (2009) Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci U S A 106(33):14016–14021

    PubMed  CAS  Google Scholar 

  23. Boiko AD et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466(7302):133–137

    PubMed  CAS  Google Scholar 

  24. Schatton T et al (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349

    PubMed  CAS  Google Scholar 

  25. Chiou SH et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14(13):4085–4095

    PubMed  CAS  Google Scholar 

  26. Prince ME et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 104(3):973–978

    PubMed  CAS  Google Scholar 

  27. Ma S et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132(7):2542–2556

    PubMed  CAS  Google Scholar 

  28. Bussolati B et al (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. Faseb J 22(10):3696–3705

    PubMed  CAS  Google Scholar 

  29. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    PubMed  CAS  Google Scholar 

  30. Zhang S et al (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68(11):4311–4320

    PubMed  CAS  Google Scholar 

  31. Eramo A et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514

    PubMed  CAS  Google Scholar 

  32. Rutella S et al (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 15(13):4299–4311

    PubMed  CAS  Google Scholar 

  33. Alison MR, Islam S (2009) Attributes of adult stem cells. J Pathol 217(2):144–160

    PubMed  CAS  Google Scholar 

  34. Kuci S et al (2009) Adult stem cells as an alternative source of multipotential (pluripotential) cells in regenerative medicine. Curr Stem Cell Res Ther 4(2):107–117

    PubMed  CAS  Google Scholar 

  35. Wang Y, Armstrong SA (2008) Cancer: inappropriate expression of stem cell programs? Cell Stem Cell 2(4):297–299

    PubMed  Google Scholar 

  36. Zhang H, Wang ZZ (2008) Mechanisms that mediate stem cell self-renewal and differentiation. J Cell Biochem 103(3):709–718

    PubMed  CAS  Google Scholar 

  37. Clarke MF et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    PubMed  CAS  Google Scholar 

  38. Jordan CT (2009) Cancer stem cells: controversial or just misunderstood? Cell Stem Cell 4(3):203–205

    PubMed  CAS  Google Scholar 

  39. Aasen T et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    PubMed  CAS  Google Scholar 

  40. Park IH et al (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451(7175):141–146

    PubMed  CAS  Google Scholar 

  41. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    PubMed  CAS  Google Scholar 

  42. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    PubMed  CAS  Google Scholar 

  43. Maitland NJ, Collins AT (2010) Cancer stem cells – a therapeutic target? Curr Opin Mol Therap 12(6):662–673

    CAS  Google Scholar 

  44. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598

    PubMed  CAS  Google Scholar 

  45. Ishizawa K et al (2010) Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 7(3):279–282

    PubMed  CAS  Google Scholar 

  46. Michor F et al (2005) Dynamics of chronic myeloid leukaemia. Nature 435(7046):1267–1270

    PubMed  CAS  Google Scholar 

  47. Garvalov BK, Acker T (2011) Cancer stem cells: a new framework for the design of tumor therapies. J Mol Med 89:95–107. doi: 10.1007/s00109-010-0685-3

    Google Scholar 

  48. Hermann PC et al (2010) Cancer stem cells in solid tumors. Semin Cancer Biol 20(2):77–84

    PubMed  CAS  Google Scholar 

  49. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    PubMed  CAS  Google Scholar 

  50. Park PC et al (2007) Stem cell enrichment approaches. Semin Cancer Biol 17(3):257–264

    PubMed  CAS  Google Scholar 

  51. Zhao RC, Zhu YS, Shi Y (2008) New hope for cancer treatment: exploring the distinction between normal adult stem cells and cancer stem cells. Pharmacol Ther 119(1):74–82

    PubMed  CAS  Google Scholar 

  52. Mimeault M et al (2008) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Endocr Rev 29(2):234–252

    PubMed  CAS  Google Scholar 

  53. Birnie R et al (2008) Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol 9(5):R83

    PubMed  Google Scholar 

  54. Blum R et al (2009) Molecular signatures of prostate stem cells reveal novel signaling pathways and provide insights into prostate cancer. PLoS One 4(5):e5722

    PubMed  Google Scholar 

  55. Sakariassen PO, Immervoll H, Chekenya M (2007) Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies. Neoplasia 9(11):882–892

    PubMed  CAS  Google Scholar 

  56. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15(9):1010–1012

    PubMed  CAS  Google Scholar 

  57. Frame FM et al (2010) Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Exp Cell Res 316(19):3161–3171

    PubMed  CAS  Google Scholar 

  58. Hope KJ, Jin L, Dick JE (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5(7):738–743

    PubMed  CAS  Google Scholar 

  59. Wang X et al (2009) A luminal epithelial stem cell that is a cell of origin for prostate cancer. Nature 461(7263):495–500

    PubMed  CAS  Google Scholar 

  60. Leong KG et al (2008) Generation of a prostate from a single adult stem cell. Nature 456(7223):804–808

    PubMed  CAS  Google Scholar 

  61. Robinson EJ, Neal DE, Collins AT (1998) Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. Prostate 37(3):149–160

    PubMed  CAS  Google Scholar 

  62. Richardson GD et al (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117(Pt 16):3539–3545

    PubMed  CAS  Google Scholar 

  63. Trerotola M et al (2010) CD133, Trop-2 and alpha2beta1 integrin surface receptors as markers of putative human prostate cancer stem cells. Am J Transl Res 2(2):135–144

    PubMed  CAS  Google Scholar 

  64. Goldstein AS et al (2010) Identification of a cell of origin for human prostate cancer. Science 329(5991):568–571

    PubMed  CAS  Google Scholar 

  65. Goldstein AS, Stoyanova T, Witte ON (2010) Primitive origins of prostate cancer: in vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol Oncol 4(5):385–396

    PubMed  Google Scholar 

  66. Lawson DA et al (2010) Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc Natl Acad Sci U S A 107(6):2610–2615

    PubMed  CAS  Google Scholar 

  67. Patrawala L et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696–1708

    PubMed  CAS  Google Scholar 

  68. Patrawala L et al (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67(14):6796–6805

    PubMed  CAS  Google Scholar 

  69. Tang DG et al (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46(1):1–14

    PubMed  CAS  Google Scholar 

  70. Maitland NJ et al (2010) Prostate cancer stem cells: Do they have a basal or luminal phenotype? Horm Cancer 2(1):47–61

    Google Scholar 

  71. Loberg RD et al (2006) Development of the VCaP androgen-independent model of prostate cancer. Urol Oncol 24(2):161–168

    PubMed  CAS  Google Scholar 

  72. Guo R et al (2011) Description of the CD133+ subpopulation of the human ovarian cancer cell line OVCAR3. Oncol Rep 25(1):141–146

    PubMed  CAS  Google Scholar 

  73. Yeung TM et al (2010) Cancer stem cells from ­colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A 107(8):3722–3727

    PubMed  CAS  Google Scholar 

  74. Liu T et al (2010) Establishment and characterization of multi-drug resistant, prostate carcinoma-­initiating stem-like cells from human prostate cancer cell lines 22RV1. Mol Cell Biochem 340(1–2):265–273

    PubMed  CAS  Google Scholar 

  75. Maitland NJ et al (2010) Gene transfer vectors targeted to human prostate cancer: do we need better preclinical testing systems? Hum Gene Ther 21(7):815–827

    PubMed  CAS  Google Scholar 

  76. Miki J et al (2007) Identification of putative stem cell markers, CD133 and CXCR4, in hTERT-­immortalized primary nonmalignant and malignant tumor-derived human prostate epithelial cell lines and in prostate cancer specimens. Cancer Res 67(7):3153–3161

    PubMed  CAS  Google Scholar 

  77. Swift SL, Burns JE, Maitland NJ (2010) Altered expression of neurotensin receptors is associated with the differentiation state of prostate cancer. Cancer Res 70(1):347–356

    PubMed  CAS  Google Scholar 

  78. Hirschhaeuser F et al (2010) Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol 148(1):3–15

    PubMed  CAS  Google Scholar 

  79. Lang SH et al (2001) Prostate epithelial cell lines form spheroids with evidence of glandular differentiation in three-dimensional Matrigel cultures. Br J Cancer 85(4):590–599

    PubMed  CAS  Google Scholar 

  80. Lang SH et al (2001) Experimental prostate epithelial morphogenesis in response to stroma and three-dimensional matrigel culture. Cell Growth Differ 12(12):631–640

    PubMed  CAS  Google Scholar 

  81. Lang SH et al (2010) Modeling the prostate stem cell niche: an evaluation of stem cell survival and expansion in vitro. Stem Cells Dev 19(4):537–546

    PubMed  CAS  Google Scholar 

  82. Sneddon JB, Werb Z (2007) Location, location, ­location: the cancer stem cell niche. Cell Stem Cell 1(6):607–611

    PubMed  CAS  Google Scholar 

  83. Li L, Neaves WB (2006) Normal stem cells and ­cancer stem cells: the niche matters. Cancer Res 66(9):4553–4557

    PubMed  CAS  Google Scholar 

  84. Josson S et al (2010) Tumor-stroma co-evolution in prostate cancer progression and metastasis. Semin Cell Dev Biol 21(1):26–32

    PubMed  CAS  Google Scholar 

  85. van der Pluijm G (2011) Epithelial plasticity, cancer stem cells and bone metastasis formation. Bone 48(1):37–43

    PubMed  Google Scholar 

  86. Iwatsuki M et al (2010) Epithelial-mesenchymal transition in cancer development and its clinical ­significance. Cancer Sci 101(2):293–299

    PubMed  CAS  Google Scholar 

  87. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor ­progression. J Mammary Gland Biol Neoplasia 15(2):117–134

    PubMed  Google Scholar 

  88. Elliott A, Adams J, Al-Hajj M (2010) The ABCs of cancer stem cell drug resistance. IDrugs 13(9):632–635

    PubMed  CAS  Google Scholar 

  89. Scotto KW (2003) Transcriptional regulation of ABC drug transporters. Oncogene 22(47):7496–7511

    PubMed  CAS  Google Scholar 

  90. Tanei T et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast ­cancers. Clin Cancer Res 15(12):4234–4241

    PubMed  CAS  Google Scholar 

  91. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    PubMed  CAS  Google Scholar 

  92. Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86(17–18):631–637

    PubMed  CAS  Google Scholar 

  93. Ma I, Allan AL (2011) The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 7:292–306. doi: 10.1007/s12015-010-9208-4

    Google Scholar 

  94. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    PubMed  CAS  Google Scholar 

  95. Gatti L et al (2009) ABC transporters as potential targets for modulation of drug resistance. Mini Rev Med Chem 9(9):1102–1112

    PubMed  CAS  Google Scholar 

  96. Fletcher JI et al (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10(2):147–156

    PubMed  CAS  Google Scholar 

  97. Wu CP, Calcagno AM, Ambudkar SV (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr Mol Pharmacol 1(2):93–105

    PubMed  CAS  Google Scholar 

  98. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    PubMed  CAS  Google Scholar 

  99. Ishii H et al (2008) Cancer stem cells and chemoradiation resistance. Cancer Sci 99(10):1871–1877

    PubMed  CAS  Google Scholar 

  100. Morrison R et al (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011:941876. doi: 10:1155/2011/941876

    Google Scholar 

  101. Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    PubMed  CAS  Google Scholar 

  102. Sheehan JP et al (2010) Improving the radiosensitivity of radioresistant and hypoxic glioblastoma. Future Oncol 6(10):1591–1601

    PubMed  CAS  Google Scholar 

  103. Viale A et al (2009) Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 457(7225):51–56

    PubMed  CAS  Google Scholar 

  104. Mohrin M et al (2010) Hematopoietic stem cell ­quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7(2):174–185

    PubMed  CAS  Google Scholar 

  105. Diehn M et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    PubMed  CAS  Google Scholar 

  106. Facchino S et al (2010) BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. J Neurosci 30(30):10096–10111

    PubMed  CAS  Google Scholar 

  107. Fulda S, Pervaiz S (2010) Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol 42(1):31–38

    PubMed  CAS  Google Scholar 

  108. Liu G et al (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    PubMed  Google Scholar 

  109. Baud V, Karin M (2009) Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 8(1):33–40

    PubMed  CAS  Google Scholar 

  110. Guzman ML et al (2007) An orally bioavailable ­parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 110(13):4427–4435

    PubMed  CAS  Google Scholar 

  111. Domen J, Cheshier SH, Weissman IL (2000) The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J Exp Med 191(2):253–264

    PubMed  CAS  Google Scholar 

  112. Tagscherer KE et al (2008) Apoptosis-based treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27(52):6646–6656

    PubMed  CAS  Google Scholar 

  113. Takebe N et al (2011) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8:97–106. doi: 10.1038/nrclinonc.2010.196

    Google Scholar 

  114. Grudzien P et al (2010) Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 30(10):3853–3867

    PubMed  CAS  Google Scholar 

  115. Fan X et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16

    PubMed  CAS  Google Scholar 

  116. Woodward WA et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci U S A 104(2):618–623

    PubMed  CAS  Google Scholar 

  117. Mueller MT et al (2009) Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137(3):1102–1113

    PubMed  CAS  Google Scholar 

  118. Sarkar FH et al (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13(3):57–66

    PubMed  CAS  Google Scholar 

  119. Hatfield S, Ruohola-Baker H (2008) microRNA and stem cell function. Cell Tissue Res 331(1):57–66

    PubMed  CAS  Google Scholar 

  120. Shcherbata HR et al (2006) The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 5(2):172–175

    PubMed  CAS  Google Scholar 

  121. Hatfield SD et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978

    PubMed  CAS  Google Scholar 

  122. Ji Q et al (2010) No small matter: microRNAs – key regulators of cancer stem cells. Int J Clin Exp Med 3(1):84–87

    PubMed  CAS  Google Scholar 

  123. Ji Q et al (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4(8):e6816

    PubMed  Google Scholar 

  124. Kong D et al (2010) Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5(8):e12445

    PubMed  Google Scholar 

  125. Starnes LM, Sorrentino A (2011) Regulatory circuitries coordinated by transcription factors and microRNAs at the cornerstone of hematopoietic stem cell self-renewal and differentiation. Curr Stem Cell Res Ther 6:142–161

    PubMed  CAS  Google Scholar 

  126. Dylla SJ et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One 3(6):e2428

    PubMed  Google Scholar 

  127. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-­initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    PubMed  Google Scholar 

  128. Calcagno AM et al (2010) Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 102(21):1637–1652

    PubMed  CAS  Google Scholar 

  129. Creighton CJ et al (2009) Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A 106(33):13820–13825

    PubMed  CAS  Google Scholar 

  130. Enver T et al (2009) Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4(5):387–397

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Yorkshire Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. Frame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frame, F.M., Maitland, N.J. (2011). Cancer Stem Cells, Models of Study and Implications of Therapy Resistance Mechanisms. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_9

Download citation

Publish with us

Policies and ethics