Skip to main content

A Novel Tumor Suppressor, REIC/Dkk-3 Gene Identified by Our In Vitro Transformation Model of Normal Human Fibroblasts Works as a Potent Therapeutic Anti-tumor Agent

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

Reduced Expression in Immortalized Cell (REIC) was cloned by subtractive hybridization method as a gene whose expression is reduced in many human immortalized and neoplastic tumor cells. The REIC, when over-expressed by an adenovirus (Ad-REIC), exhibited a dramatic therapeutic effect on a wide variety of human cancers through a mechanism triggered by ER-stress-mediated JNK activation. In addition to this direct effect on cancer cells, Ad-REIC exerted another cytotoxicity on human cancers, an indirect host-mediated effect due to overproduction of IL-7 by mis-targeted normal cells. This “one-bullet two-arms” finding may lead to a powerful new therapeutic approach to the treatment of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nielsen LL, Maneval DC (1998) P53 tumor suppressor gene therapy for cancer. Cancer Gene Ther 5:52–63

    PubMed  CAS  Google Scholar 

  2. Saito Y, Swanson X, Mhashilkar AM, Oida Y, Schrock R, Branch CD, Chada S, Zumstein L, Ramesh R (2003) Adenovirus-mediated transfer of the PTEN gene inhibits human colorectal cancer growth in vitro and in vivo. Gene Ther 10:1961–1969

    Article  PubMed  CAS  Google Scholar 

  3. Fisher PB (2005) Is mda-7/IL-24 a “magic bullet” for cancer? Cancer Res 65:10128–10138

    Article  PubMed  CAS  Google Scholar 

  4. Tsuji T, Miyazaki M, Sakaguchi M, Inoue Y, Namba M (2000) A REIC gene shows down-regulation in human immortalized cells and human tumor-derived cell lines. Biochem Biophys Res Commun 268:20–24

    Article  PubMed  CAS  Google Scholar 

  5. Nozaki I, Tsuji T, Iijima O, Ohmura Y, Andou A, Miyazaki M, Shimizu N, Namba M (2001) Reduced expression of REIC/Dkk-3 gene in non-small cell lung cancer. Int J Oncol 19:117–121

    PubMed  CAS  Google Scholar 

  6. Kurose K, Sakaguchi M, Nasu Y, Ebara S, Kaku H, Kariyama R, Arao Y, Miyazaki M, Tsushima T, Namba M, Kumon H, Huh NH (2004) Decreased expression of REIC/Dkk-3 in human renal clear cell carcinoma. J Urol 171:1314–1318

    Article  PubMed  CAS  Google Scholar 

  7. Abarzua F, Sakaguchi M, Takaishi M, Nasu Y, Kurose K, Ebara S, Miyazaki M, Namba M, Kumon H, Huh NH (2005) Adenovirus-mediated overexpression of REIC/Dkk-3 selectively induces apoptosis in human prostate cancer cells through activation of c-Jun-NH2-kinase. Cancer Res 65:9617–9622

    Article  PubMed  CAS  Google Scholar 

  8. Tanimoto R, Abarzua F, Sakaguchi M, Takaishi M, Nasu Y, Kumon H, Huh NH (2007) REIC/Dkk-3 as a potential gene therapeutic agent against human testicular cancer. Int J Mol Med 19:363–368

    PubMed  CAS  Google Scholar 

  9. Kobayashi T, Sakaguchi M, Tanimoto R, Abarzua F, Takaishi M, Kaku H, Kataoka K, Saika T, Nasu Y, Miyazaki M, Kumon H, Huh NH (2008) Mechanistic analysis of resistance to REIC/Dkk-3-induced apoptosis in human bladder cancer cells. Acta Med Okayama 62:393–401

    PubMed  CAS  Google Scholar 

  10. Abarzua F, Sakaguchi M, Tanimoto R, Sonegawa H, Li DW, Edamura K, Kobayashi T, Watanabe M, Kashiwakura Y, Kaku H, Saika T, Nakamura K, Nasu Y, Kumon H, Huh NH (2007) Heat shock proteins play a crucial role in tumor-specific apoptosis by REIC/Dkk-3. Int J Mol Med 20:37–43

    PubMed  CAS  Google Scholar 

  11. Kashiwakura Y, Ochiai K, Watanabe M, Abarzua F, Sakaguchi M, Takaoka M, Tanimoto R, Nasu Y, Huh NH, Kumon H (2008) Down-regulation of inhibition of differentiation-1 via activation of activating transcription factor 3 and Smad regulates REIC/Dickkopf-3-induced apoptosis. Cancer Res 68:8333–8341

    Article  PubMed  CAS  Google Scholar 

  12. Sakaguchi M, Kataoka K, Abarzua F, Tanimoto R, Watanabe M, Murata H, Than SS, Kurose K, Kashiwakura Y, Ochiai K, Nasu Y, Kumon H, Huh NH (2009) Overexpression of REIC/Dkk-3 in normal fibroblasts suppresses tumor growth via induction of interleukin-7. J Biol Chem 284:14236–14244

    Article  PubMed  CAS  Google Scholar 

  13. Namba M, Mihara K, Fushimi K (1996) Immortalization of human cells and its mechanisms. Crit Rev Oncog 7:19–31

    Article  PubMed  CAS  Google Scholar 

  14. Namba M, Nishitani K, Fukushima F, Kimoto T (1988) Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes. Anticancer Res 8:947–958

    PubMed  CAS  Google Scholar 

  15. Stein GH, Namba M, Corsaro CM (1985) Relationship of finite proliferative lifespan, senescence, and quiescence in human cells. J Cell Physiol 122:343–349

    Article  PubMed  CAS  Google Scholar 

  16. Tsuji T, Nozaki I, Miyazaki M, Sakaguchi M, Pu H, Hamazaki Y, Iijima O, Namba M (2001) Antipro­liferative activity of REIC/Dkk-3 and its significant down-regulation in non-small-cell lung carcinomas. Biochem Biophys Res Commun 289:257–263

    Article  PubMed  CAS  Google Scholar 

  17. Feinberg AP (1999) Imprinting of a genomic domain of 11p15 and loss of imprinting in cancer: an introduction. Cancer Res 59:1743–1746

    Google Scholar 

  18. Kobayashi K, Ouchida M, Tsuji T, Hanafusa H, Miyazaki M, Namba M, Shimizu N, Shimizu K (2002) Reduced expression of the REIC/Dkk-3 gene by promoter-hypermethylation in human tumor cells. Gene 282:151–158

    Article  PubMed  CAS  Google Scholar 

  19. Pataer A, Hu W, Xiaolin L, Chada S, Roth JA, Hunt KK, Swisher SG (2008) Adenoviral endoplasmic reticulum-targeted mda-7/interleukin-24 vector enhances human cancer cell killing. Mol Cancer Ther 7:2528–2535

    Article  PubMed  CAS  Google Scholar 

  20. Tanimoto R, Sakaguchi M, Abarzua F, Kataoka K, Kurose K, Murata H, Nasu Y, Kumon H, Huh NH (2010) Down-regulation of BiP/GRP78 sensitizes resistant prostate cancer cells to gene-therapeutic overexpression of REIC/Dkk-3. Int J Cancer 126:1562–1569

    PubMed  CAS  Google Scholar 

  21. Guarino M, Rubino B, Ballabio G (2007) The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39:305–318

    Article  PubMed  CAS  Google Scholar 

  22. Edamura K, Nasu Y, Takaishi M, Kobayashi T, Abarzua F, Sakaguchi M, Kashiwakura Y, Ebara S, Saika T, Watanabe M, Huh NH, Kumon H (2007) Adenovirus-mediated REIC/Dkk-3 gene transfer inhibits tumor growth and metastasis in an orthotopic prostate cancer model. Cancer Gene Ther 14:765–772

    Article  PubMed  CAS  Google Scholar 

  23. Gottesman MM, Pastan I, Ambudkar SV (1996) P-glycoprotein and multidrug resistance. Curr Opin Genet Dev 6:610–617

    Article  PubMed  CAS  Google Scholar 

  24. Gottesman MM, Ling V (2006) The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 580:998–1009

    Article  PubMed  CAS  Google Scholar 

  25. Kawasaki K, Watanabe M, Sakaguchi M, Ogasawara Y, Ochiai K, Nasu Y, Doihara H, Kashiwakura Y, Huh NH, Kumon H, Date H (2009) REIC/Dkk-3 overexpression downregulates P-glycoprotein in multidrug-resistant MCF7/ADR cells and induces apoptosis in breast cancer. Cancer Gene Ther 16:65–72

    Article  PubMed  CAS  Google Scholar 

  26. Lee AS (2007) GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67:3496–3499

    Article  PubMed  CAS  Google Scholar 

  27. Park HR, Tomida A, Sato S, Tsukumo Y, Yun J, Yamori T, Hayakawa Y, Tsuruo T, Shin-ya K (2004) Effect on tumor cells of blocking survival response to glucose deprivation. J Natl Cancer Inst 96:1300–1310

    Article  PubMed  CAS  Google Scholar 

  28. Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, Ma WY, Bode AM, Dong Z (2006) (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 66:9260–9269

    Article  PubMed  CAS  Google Scholar 

  29. Meier O, Greber UF (2003) Adenovirus endocytosis. J Gene Med 5:451–462

    Article  PubMed  CAS  Google Scholar 

  30. Freimuth P, Philipson L, Carson SD (2008) The ­coxsackievirus and adenovirus receptor. Curr Top Microbiol Immunol 323:67–87

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Namba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sakaguchi, M., Huh, Nh., Namba, M. (2011). A Novel Tumor Suppressor, REIC/Dkk-3 Gene Identified by Our In Vitro Transformation Model of Normal Human Fibroblasts Works as a Potent Therapeutic Anti-tumor Agent. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_17

Download citation

Publish with us

Policies and ethics