Skip to main content

Nuclear Barrier Hypothesis of Aging as Mechanism for Trade-Off Growth to Survival

  • Chapter
  • First Online:
Human Cell Transformation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 720))

Abstract

When the aging-dependent cellular behaviors toward growth factors and toxic stress have been analyzed, the perinuclear accumulation of the activated signals, either mitogenic or apoptotic, has been observed, suggesting the aging-dependent inefficiency of the nucleocytoplasmic trafficking of the signals. Thereby, it would be natural to assume the operation of the functional nuclear barrier in aging-dependent manner, which would be designated as “Park and Lim’s Barrier.” And for the ultimate transcriptional factor for these aging-dependent changes of the functional nuclear barrier, Sp1 transcriptional factor has been suggested to be the most probable candidate. This novel mechanism of aging-dependent operation of the functional nuclear barrier is proposed as the ultimate checking mechanism for cellular protection against toxic environment and the general mechanism for the trade-off growth to survival in aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahn JS, Jang IS, Kim DI, Cho KA, Park YH, Kim KT, Kwak CS, Park SC (2003) Aging-associated increase of gelsolin for apoptosis resistance. Biochem Biophys Res Comun 312:1335–1341

    Article  CAS  Google Scholar 

  2. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:1996–2003

    Article  Google Scholar 

  3. Beck M, Forster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390

    Article  PubMed  CAS  Google Scholar 

  4. Bretscher MS, Whytock S (1977) Membrane-associated vesicles in fibroblasts. J Ultrastruct Res 6:215–217

    Article  Google Scholar 

  5. Carlin CR, Phillips PD, Knowles BB, Cristofalo VJ (1983) Diminished in vitro tyrosine kinase activity of the EGF receptor of senescent human fibroblasts. Nature 306(5943):617–620

    Article  PubMed  CAS  Google Scholar 

  6. Carman CV, Lisanti MP, Benovic JL (1999) Regulation of G protein-coupled receptor kinases by caveolin. J Biol Chem 274:8858–8864

    Article  PubMed  CAS  Google Scholar 

  7. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    Article  PubMed  CAS  Google Scholar 

  8. Chapman HA, Wei Y, Simon DI, Waltz DA (1999) Role of urokinase receptor and caveolin in regulation of integrin signaling. Thromb Haemost 82:291–297

    PubMed  CAS  Google Scholar 

  9. Chen QM, Tu VC, Catania J, Burton M, Toussaint O, Dilley T (2000) Involvement of Rb family proteins, focal adhesion proteins and protein synthesis in senescent morphogenesis induced by hydrogen peroxide. J Cell Sci 113:4087–4097

    PubMed  CAS  Google Scholar 

  10. Cho KA, Park SC (2005) Caveolin-1 as a prime modulator of aging: A new modality for phenotypic restoration? Mech Ageing Dev 126(1):105–110

    Article  PubMed  CAS  Google Scholar 

  11. Cho KA, Ryu SJ, Oh YS, Park JH, Lee JW, Kim HP, Kim KT, Jang IS, Park SC (2004) Morphological adjustment of senescent cells by modulating caveolin-1 status. J Biol Chem 279:42270–42278

    Article  PubMed  CAS  Google Scholar 

  12. Cho KA, Ryu SJ, Park JS, Is J, Ahn JS, Kim KT, Park SC (2003) Senescent pheonotype can be reversed by reduction of caveolin status. J Biol Chem 278(30):27789–27795

    Article  PubMed  CAS  Google Scholar 

  13. Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins: caveolin-binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    Article  PubMed  CAS  Google Scholar 

  14. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  PubMed  CAS  Google Scholar 

  15. D’Angelo MA, Hetzer MW (2008) Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18:456–466

    Article  PubMed  Google Scholar 

  16. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22:5885–5896

    Article  PubMed  CAS  Google Scholar 

  17. Diaz-Horta O, Van Eylen F, Herchuelz A (2003) Na/Ca exchanger overexpression induces endoplasmic reticulum stress, caspase-12 release, and apoptosis. Ann N Y Acad Sci 1010:430–432

    Article  PubMed  CAS  Google Scholar 

  18. Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    Article  PubMed  CAS  Google Scholar 

  19. Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205–211

    Article  PubMed  CAS  Google Scholar 

  20. Galbiati F, Volonte D, Liu J, Capozza F, Frank PG, Zhu L, Pestell RG, Lisanti MP (2001) Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell 12(8):2229–2244

    PubMed  CAS  Google Scholar 

  21. Hardman RA, Afshari CA, Barrett JC (2001) Involvement of mammalian MLH1 in the apoptotic response to peroxide-induced oxidative stress. Cancer Res 61(4):1392–1397

    PubMed  CAS  Google Scholar 

  22. Hoelz A, Blobel G (2004) Cell biology: popping out of the nucleus. Nature 432:815–816

    Article  PubMed  CAS  Google Scholar 

  23. Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16:6535–6547

    Article  PubMed  CAS  Google Scholar 

  24. Jang IS, Yeo EJ, Park JA, Ahn JS, Cho KA, Juhnn YS, Park SC (2003) Altered cAMP signaling induced by lysophosphatidic acid in senescent human diploid fibroblasts. Biochem Biophys Res Comm 302(4):778–784

    Article  PubMed  CAS  Google Scholar 

  25. Jang IS, Rhim JH, Park SC, Yeo EJ (2006) Downstream molecular events in the altered profiles of lysophosphatidic acid-induced cAMP in senescent human diploid fibroblasts. Exp Mol Med 38(2):134–143

    Article  PubMed  CAS  Google Scholar 

  26. Jang IS, Rhim JH, Kim KT, Cho KA, Yeo EJ, Park SC (2006) Lysophosphatidic acid-induced changes in cAMP profiles in young and senescent human fibroblasts as a clue to the ageing process. Mech Ageing Dev 127(5):481–92006

    Article  PubMed  CAS  Google Scholar 

  27. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912

    Article  PubMed  CAS  Google Scholar 

  28. Kang HT, Ju JW, Cho JW, Hwang ES (2003) Down-regulation of Sp1 activity through modulation of O-glycosylation by treatment with a low glucose mimetic, 2-deoxyglucose. J Biol Chem 278:51223–51231

    Article  PubMed  CAS  Google Scholar 

  29. Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15(6):691–699

    Article  PubMed  CAS  Google Scholar 

  30. Kim K, Nose K, Shibanuma M (2000) Significance of nuclear relocalization of ERK1/2 in reactivation of c-fos transcription and DNA synthesis in senescent fibroblasts. J Biol Chem 275:20685–20692

    Article  Google Scholar 

  31. Kim SY, Ryu SJ, Ahn HJ, Choi HR, Kang HT, Park SC (2010) Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression. Biochem Biophys Res Commun 391:28–32

    Article  PubMed  CAS  Google Scholar 

  32. Kim SY, Kang HT, Choi HR, Park SC (2010) Reduction of Nup107 attenuates the growth factor signaling in the senescent cells. Biochem Biophys Res Commun 401:131–136

    Article  PubMed  CAS  Google Scholar 

  33. Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205(1161):531–546

    Article  PubMed  CAS  Google Scholar 

  34. Kwon HJ, Rhim JH, Jang IS, Jun G, Park SC, Yeo EJ (2010) Activation of AMP-activated protein kinase stimulates the nuclear localization of glyceraldehyde 3-phosphate dehydrogenase in human diploid fibroblasts. Exp Mol Med 42(4):254–269

    Article  PubMed  CAS  Google Scholar 

  35. Li L, Ren CH, Tahir SA, Ren C, Thompson TC (2003) Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interaction with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 23:9389–9404

    Article  PubMed  CAS  Google Scholar 

  36. Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, Ren C, Wang J, Tahir SA, Thonpson TC (2001) Caveloin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61:4386–4392

    PubMed  CAS  Google Scholar 

  37. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, G alpha subunits and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  PubMed  CAS  Google Scholar 

  38. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP (1995) Evidence for a regulated interaction between hetero-trimeric G proteins and caveolin. J Biol Chem 270:15693–15701

    Article  PubMed  CAS  Google Scholar 

  39. Lim IK, Hong K, Kwak IH, Yoon G, Park SC (2000) Cytoplasmic retention of p-Erk1/2 and nuclear accumulation of actin proteins during cellular senescence in human diploid fibroblasts. Mech Ageing Dev 119:113–130

    Article  PubMed  CAS  Google Scholar 

  40. Martin D, Salinas M, Fujita N, Tsuruo T, Cuadrado A (2002) Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B. J Biol Chem 277(45):42943–42952

    Article  PubMed  CAS  Google Scholar 

  41. Okamoto T, Schlegel A, Schlegel PE, Schlegel MP (1998) Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes’ at the plasma membrane. J Biol Chem 273:5419–5422

    Article  PubMed  CAS  Google Scholar 

  42. Park JS, Park WY, Cho KA, Kim DI, Jhun BH, Kim SR, Park SC (2001) Down-regulation of amphiphysin-1 is responsible for reduced receptor-mediated endocytosis in senescent cells. FASEB J 15:1625–1627

    PubMed  CAS  Google Scholar 

  43. Park SC (2002) Functional recovery of senescent cells through restoration of receptor-mediated endocytosis. Mech Ageing Dev 123:917–926

    Article  PubMed  CAS  Google Scholar 

  44. Park SC (2006) New molecular target for modulation of aging process. Antioxid Redox Signal 8(3–4):620–627

    Article  PubMed  CAS  Google Scholar 

  45. Park SC (2004) Phenotypic adjustment of senescent cells: replace or restore. Geriatr Gerontol Int 4:517–520

    CAS  Google Scholar 

  46. Park SC, Cho KA, Jang IS, Kim KT, Ryu SJ (2004) Functional efficiency of the senescent cells: replace or restore. Ann NY Acad Sci 1019:309–316

    Article  PubMed  CAS  Google Scholar 

  47. Park WY, Park JS, Cho KA, Kim DI, Ko YG, Seo JS, Park SC (2000) Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem 275(27):20847–20852

    Article  PubMed  CAS  Google Scholar 

  48. Parton RG, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136:137–154

    Article  PubMed  CAS  Google Scholar 

  49. Pepper C, Bentley P (2000) The role of the Bcl-2 family in the modulation of apoptosis. Symp Soc Exp Biol 52:43–53

    PubMed  CAS  Google Scholar 

  50. Phillips PD, Kuhnle E, Cristofalo VJ (1983) EGF binding ability is stable throughout the replicative life-span of WI-38 cells. J Cell Physiol 114(3):311–316

    Article  PubMed  CAS  Google Scholar 

  51. Razani B, Schlegel A, Liu J, Lisanti MP (2001) Caveolin-1, a putative tumour suppressor gene. Biochem Soc Trans 29:494–499

    Article  PubMed  CAS  Google Scholar 

  52. Royuela M, Arenas MI, Bethencourt FR, Sanchez-Chapado M, Fraile B, Paniagua R (2002) Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Hum Pathol 33(3):299–306

    Article  PubMed  CAS  Google Scholar 

  53. Ryu SJ, Oh YS, Park SC (2007) Failure of stress-­induced downregulation of Bcl-2 contributes to apoptosis resistance in senescent human diploid fibroblasts. Cell Death Differ 14(5):1020–1028

    PubMed  CAS  Google Scholar 

  54. Ryu SJ, An HJ, Oh YS, Choi HR, Ha MK, Park SC (2008) On the role of major vault protein in the resistance of senescent human diploid fibroblast to apoptosis. Cell Death Differ 15(11): 1678–1680

    Article  PubMed  CAS  Google Scholar 

  55. Sargiacomo M, Scherer PE, Tang Z, Kubler E, Song KS, Sanders MC, Lisanti MP (1995) Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA 92:9407–9411

    Article  PubMed  CAS  Google Scholar 

  56. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, Donselaar E, Peters P, Lisanti MP (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins-1 and -2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346

    Article  PubMed  CAS  Google Scholar 

  57. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP (1996) Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 93:131–135

    Article  PubMed  CAS  Google Scholar 

  58. Schlegel A, Schwab RB, Scherer PE, Lisanti MP (1999) A role for the caveolin-scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin-scaffolding domain is both necessary and sufficient for membrane binding in vitro. J Biol Chem 274:22660–22667

    Article  PubMed  CAS  Google Scholar 

  59. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9(9):726–735

    PubMed  CAS  Google Scholar 

  60. Seluanov A, Gorbunova V, Falcovitz A, Sigal A, Milyavsky M, Zurer I, Shohat G, Goldfinger N, Rotter V (2001) Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53. Mol Cell Biol 21:1552–1564

    Article  PubMed  CAS  Google Scholar 

  61. Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Copurification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent free purification of caveolae membranes. J Biol Chem 271:9690–9697

    Article  PubMed  CAS  Google Scholar 

  62. Stoffler D, Fahrenkrog B, Aebi U (1999) The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol 11:391–401

    Article  PubMed  CAS  Google Scholar 

  63. Suh Y, Lee KA, Kim WH, Han BG, Vijg J, Park SC (2002) Aging alters the apoptotic response to genotoxic stress. Nat Med 8:3–4

    Article  PubMed  CAS  Google Scholar 

  64. Tang Z, Scherer PE, Okamoto T, Song KC (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261

    Article  PubMed  CAS  Google Scholar 

  65. Teixeira A, Chaverot N, Schroder C, Strosberg AD, Couraud PO, Cazaubon S (1999) Requirement of caveolae microdomains in extracellular signal-regulated kinase and focal adhesion kinase activation induced by endothelin-1 in primary astrocytes, J. Neurochemistry 72(1):120–128

    CAS  Google Scholar 

  66. Tesauro M, Thompson WC, Moss J (2006) Effect of staurosporine-induced apoptosis on endothelial nitric oxide synthase in transfected COS-7 cells and primary endothelial cells. Cell Death Differ 13(4):597–606

    Article  PubMed  CAS  Google Scholar 

  67. Turpin P, Ossareh-Nazari B, Dargemont C (1999) Nuclear transport and transcriptional regulation. FEBS Lett 452:82–86

    Article  PubMed  CAS  Google Scholar 

  68. Volonte D, Zhang K, Lisanti MP, Galbiati F (2002) Expression of caveolin-1 induces premature cellular senescence in primary cultures of murine fibroblasts. Mol Biol Cell 13(7):2502–2517

    Article  PubMed  CAS  Google Scholar 

  69. Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA (1999) A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol 144(6):1285–1294

    Article  PubMed  CAS  Google Scholar 

  70. Yeo EJ, Hwang YC, Kang CM, Choy HE, Park SC (2000) Reduction of UV-induced cell death in the human senescent fibroblasts. Mol Cells 10:415–422

    PubMed  CAS  Google Scholar 

  71. Yeo EJ, Jang IS, Lim HK, Ha KS, Park SC (2002) Agonist-specific differential changes of cellular signal transduction pathways in senescent human diploid fibroblasts. Exp Gerontol 37(7):871–883

    Article  PubMed  CAS  Google Scholar 

  72. Yeo EJ, Park SC (2002) Age-dependent agonist-­specific dysregulation of membrane-mediated signal transduction: Emergence of the gate theory of aging. Mech Age Devel 123:1563–1578

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2010-0029150) and also by the Korea Research Foundation for Health Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Chul Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Park, S.C. (2011). Nuclear Barrier Hypothesis of Aging as Mechanism for Trade-Off Growth to Survival. In: Rhim, J., Kremer, R. (eds) Human Cell Transformation. Advances in Experimental Medicine and Biology, vol 720. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0254-1_1

Download citation

Publish with us

Policies and ethics