Advertisement

Why You Should Consider Nature-Inspired Optimization Methods in Financial Mathematics

Chapter

Abstract

Especially after the success of genetic algorithms, which is influenced by the natural selection phenomenon, the last two decades have witnessed an increasing emphasis in the computer science and engineering communities on the studies about nature-inspired computing. A considerable number of algorithms mimicking some phenomena in nature have yielded a wide spectrum of applications. Algorithms in this class (genetic algorithm, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, etc.), which have been developed particularly for complicated multidimensional continuous and combinatorial optimization problems, together with their current/potential applications in financial mathematics (particularly application to the portfolio optimization problem and its derivatives) constitute the main theme of this study.

References

  1. 1.
    Anagnostopoulos, K.P. and G. Mamanis (2010). A portfolio optimization model with three objectives and discrete variables. Computers & Operations Research, 37, 1285–1297.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Armananzas, R. and J.A. Lozano (2005). A multiobjective approach to the portfolio optimization problem. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, p. 1388–1395.Google Scholar
  3. 3.
    Ardia, D., K. Boudt, P. Carl, K.M. Mullen and B.G. Peterson (2010). Differential evolution (DEoptim) for non-convex portfolio optimization. Munich Personal Repec Archive, MPRA Paper No. 22135, [online], April 2010, Available at: http://mpra.ub.uni-muenchen.de/22135/1/MPRA_paper_22135.pdf.
  4. 4.
    Arnone, S., A. Loraschi and A. Tettamanzi (1993). A genetic approach to portfolio selection. Neural Network World, 6, 597–604.Google Scholar
  5. 5.
    Chang, T.J., N. Meade, J.E. Beasley and Y.M. Sharaiha (2000). Heuristics for cardinality constrained portfolio optimization. Computers & Operations Research, 27, 1271–1302.MATHCrossRefGoogle Scholar
  6. 6.
    Chang, T.-J., S.-C. Yang and K.-J. Chang (2009). Portfolio optimization problems in different risk measures using genetic algorithm. Expert Systems with Applications, 36, 10529–10537.CrossRefGoogle Scholar
  7. 7.
    Chen, S.-H. and T.-W. Kuo (2002). Evolutionary computation in economics and finance: A bibliography. In Evolutionary Computation in Economics and Finance (S.-H. Chen, (Ed.)), 419–455, Physica-Verlag, Heidelberg.Google Scholar
  8. 8.
    Chen, W. and W.-G. Zhang (2010). The admissible portfolio selection problem with transaction costs and an improved PSO algorithm. Physica A, 389, 2070–2076.CrossRefGoogle Scholar
  9. 9.
    Chen, Y., S. Mabub and K. Hirasawa (2010). A model of portfolio optimization using time adapting genetic network programming. Computers & Operations Research, 37, 1697–1707.MATHCrossRefGoogle Scholar
  10. 10.
    Chiam, S.C., K.C. Tan and A.A.L. Mamum (2008). Evolutionary multi-objective portfolio optimization in practical context. International Journal of Automation and Computing, 5(1), 67–80.CrossRefGoogle Scholar
  11. 11.
    Coello, C.A.C. (2002). An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 32(2), 109–143.CrossRefGoogle Scholar
  12. 12.
    Coello, C.A.C. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28–36.CrossRefGoogle Scholar
  13. 13.
    Corne, D.W., J.D. Knowles and M.J. Oates (2000). The Pareto envelope-based selection algorithm for multiobjective optimization. In: Proceedings of the Parallel Problem Solving from Nature VI Conference - Lecture Notes in Computer Science, vol. 1917, p. 839–848.Google Scholar
  14. 14.
    Cortés, P., J.M. García, J. Muñuzuri, and L. Onieva (2008). Viral systems: a new bio-inspired optimisation approach. Computers & Operations Research, 35(9), 2840–2860.MATHCrossRefGoogle Scholar
  15. 15.
    Crama, Y. and M. Schyns (2003). Simulated annealing for complex portfolio selection problems. European Journal of Operational Research, 150, 546–571.MATHCrossRefGoogle Scholar
  16. 16.
    Czyzak, P. and A. Jaszkiewicz (1998). Pareto simulated annealing: a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7, 34–47.MATHCrossRefGoogle Scholar
  17. 17.
    Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester.MATHGoogle Scholar
  18. 18.
    Deb, K., A. Ptratap, S. Agarwal and T. Meyarivan (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  19. 19.
    Diosan, L. (2005). A multi-objective evolutionary approach to the portfolio optimization problem. In: Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, p. 183–188.Google Scholar
  20. 20.
    Doerner, K., W.J. Gutjahr, R.F. Hartl, C. Strauss and C. Stummer (2001). Ant colony optimization in multiobjective portfolio selection. In: Proceedings of the 4th Metaheuristics International Conference, p. 243–248.Google Scholar
  21. 21.
    Dorigo, M. (1992). Optimisation, Learning, and Natural Algorithms, Ph.D. Thesis, Politecnico diMilano, Italy.Google Scholar
  22. 22.
    Dorigo, M., V. Maniezzo, and A. Colorni. (1996). The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, 26, 29–41.CrossRefGoogle Scholar
  23. 23.
    Dorigo, M. and L. Gambardella (1997). Ant colony system: a cooperative learning approach to the travelling salesman problem. IEEE Transactions on Evolutionary Computation, 1, 53–66.CrossRefGoogle Scholar
  24. 24.
    Dorigo, M. and G. Di Caro (1999). The ant colony optimization meta-heuristic. In New Ideas in Optimization (D. Corne, M. Dorigo and F. Glover (Eds.)), p. 11–32, McGraw-Hill, London.Google Scholar
  25. 25.
    Dueck, G. and P. Winker (1992). New concepts and algorithms for portfolio choice. Applied Stochastic Models and Data Analysis, 8, 159–178.CrossRefGoogle Scholar
  26. 26.
    Ehrgott, M. and X. Gandibleux (2000). A survey and annotated bibliography of multiobjective combinatorial optimization. OR Spektrum, 22, 425–460.MathSciNetMATHGoogle Scholar
  27. 27.
    Etemadi, H., A.A.A. Rostamy and H.F. Dehkordi (2009). A genetic programming model for bankruptcy prediction: empirical evidence from Iran. Expert Systems with Applications, 36(2), 3199–3207.CrossRefGoogle Scholar
  28. 28.
    Fieldsend, J.E., J. Matatko and M. Peng (2004). Cardinality constrained portfolio optimisation. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3177, p. 788–793.Google Scholar
  29. 29.
    Formato, R.A. (2007). Central force optimization: a new nature inspired computational framework for multidimensional search and optimization. In: Proceedings of Nature Inspired Cooperative Strategies for Optimization (NICSO 2007) – Studies in Computational Intelligence, vol. 129, p. 221–238.Google Scholar
  30. 30.
    Formato, R.A. (2009a). Central force optimization: a new deterministic gradient-like optimization metaheuristic. OPSEARCH, 46(1), 25–51.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Formato, R.A. (2009b). Central force optimisation: a new gradient-like metaheuristic for multidimensional search and optimisation. International Journal of Bio-Inspired Computation, 1(4), 217–238.CrossRefGoogle Scholar
  32. 32.
    Glover, F. (1989). Tabu search - Part I. ORSA Journal on Computing, 1(3), 190–206.MATHGoogle Scholar
  33. 33.
    Glover, F. (1990). Tabu search - Part II. ORSA Journal on Computing, 2(1), 4–32.MATHGoogle Scholar
  34. 34.
    Hansen, M. (2000). Tabu search for multiobjective combinatorial optimization: TAMOCO. Control and Cybernetics, 29, 799–818.MathSciNetMATHGoogle Scholar
  35. 35.
    Holland, J.H. (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. University of Michigan Press, Michigan.Google Scholar
  36. 36.
    Jobst, N.J., M.D. Horniman, C.A. Lucas and G. Mitra (2001). Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints. Quantitative Finance, 1, 1–13.MathSciNetCrossRefGoogle Scholar
  37. 37.
    Karaboga, D. and B. Basturk (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39(3), 459–471.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Karci, A. (2007). Theory of saplings growing up algorithm. In: Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, vol. 4431, p. 450–460.Google Scholar
  39. 39.
    Kellerer, H. and D.G. Maringer (2003). Optimization of cardinality constrained portfolios with a hybrid local search algorithm. OR Spectrum, 25(4), 481–495.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Kendall, G. and Y. Su (2005). A particle swarm optimisation approach in the construction of optimal risky portfolios. In: Proceedings of Artificial Intelligence and Applications, vol. 453, p. 140–145.Google Scholar
  41. 41.
    Kennedy, J. and R.C. Eberhart (1995). Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, p. 1942–1948.Google Scholar
  42. 42.
    Kirkpatrick, S., C.D. Gelatt and M.P. Vecchi (1983). Optimization by simulated annealing, Science - New Series, 220(4598), 671–680.MathSciNetGoogle Scholar
  43. 43.
    Konno, H. (2003). Portfolio optimization of small fund using mean-absolute deviation model. International Journal of Theoretical and Applied Finance, 6(4), 403–418.MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Konno, H. and H. Yamazaki (1991). Mean-absolute deviation portfolio in optimization model and its application to Tokyo stock market. Management Science, 37, 519–531.CrossRefGoogle Scholar
  45. 45.
    Konno, H., and T. Koshizuka (2005). Mean-absolute deviation model. IIE Transactions, 37, 893–900.CrossRefGoogle Scholar
  46. 46.
    Konno, H. and R. Yamamoto (2005). A mean–variance–skewness model: Algorithm and applications. International Journal of Theoretical and Applied Finance, 8(4), 409–423.MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Koza, J.R. (1992). Genetic Programming, on the Programming of Computers by means of Natural Selection. MIT Press, Cambridge (MA).MATHGoogle Scholar
  48. 48.
    Krink, T. and S. Paterlini (2010). Multiobjective optimization using differential evolution for real-world portfolio optimization. Computational Management Science, doi: 10.1007/s10287-009-0107-6 (in press).Google Scholar
  49. 49.
    Krishnanand, K.N. and D. Ghose 2009. Glowworm swarm optimisation: a new method for optimising multi-modal functions. International Journal of Computational Intelligence Studies, 1(1), 93–119.Google Scholar
  50. 50.
    Kyong, J.O., Y.K. Tae and M. Sungky (2005). Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 28, 371–379.CrossRefGoogle Scholar
  51. 51.
    Lin, C.C. and Y.T. Liu (2008). Genetic algorithms for portfolio selection problems with minimum transaction lots. European Journal of Operational Research, 185(1), 393–404.MATHCrossRefGoogle Scholar
  52. 52.
    Lin, D., S. Wang and H. Yan (2001). A multiobjective genetic algorithm for portfolio selection problem. In: Proceedings of the ICOTA 2001, Hong Kong.Google Scholar
  53. 53.
    Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.CrossRefGoogle Scholar
  54. 54.
    Markowitz, H. (1959). Portfolio Selection: Efficient Diversification of Investments. John Wiley & Sons, New York.Google Scholar
  55. 55.
    Mehrabian, A. R. and C. Lucas (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1, 355–366.CrossRefGoogle Scholar
  56. 56.
    Mucherino, A and O. Seref (2007). Monkey search: a novel meta-heuristic search for global optimization. In: Proceedings of the Conference Data Mining, System Analysis and Optimization in Biomedicine (AIP Conference Proceedings 953), p. 162–173.Google Scholar
  57. 57.
    Oh, K.J., T.Y. Kim, S.H. Min (2005). Using genetic algorithm to support portfolio optimization for index fund management. Expert Systems with Applications, 28, 371–379.CrossRefGoogle Scholar
  58. 58.
    Oh, K.J., T.Y. Kim, S.H. Min and H.Y. Lee (2006). Portfolio algorithm based on portfolio beta using genetic algorithm. Expert Systems with Applications, 30(3), 527–534.CrossRefGoogle Scholar
  59. 59.
    Ong, C.S., J.J. Huang and G.H. Tzeng (2005). A novel hybrid model for portfolio selection. Applied Mathematics and Computation, 169, 1195–1210.MathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Orito, Y., H. Yamamoto and G. Yamazaki (2003). Index fund selections with genetic algorithms and heuristic classifications. Computers and Industrial Engineering, 45, 97–109.CrossRefGoogle Scholar
  61. 61.
    Pham D.T., A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim and M. Zaidi (2006). The bees algorithm – a novel tool for complex optimisation problems, In: Proceedings of IPROMS 2006 Conference, p. 454–461.Google Scholar
  62. 62.
    Poli, R. (2007). An analysis of publications on particle swarm optimisation applications, Technical Report- University of Essex Computer Science and Electrical Engineering CSM-469, [online], May 2007 (rev. Nov. 2007), Available at: http://www.essex.ac.uk/dces/research/publications/technicalreports/2007/tr-csm469-revised.pdf.
  63. 63.
    Poli, R. (2008). Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, Article ID: 685175, doi:10.1155/2008/685175.Google Scholar
  64. 64.
    Potvin, J., P. Soriano and M. Vallee (2004). Generating trading rules on the stock markets with genetic programming. Computers & Operations Research, 31(7), 1033–1047.MATHCrossRefGoogle Scholar
  65. 65.
    Rashedi, E., H. Nezamabadipour, and S. Saryazdi (2009). GSA: A gravitational search algorithm. Information Sciences, 179(13), 2232–2248.MATHCrossRefGoogle Scholar
  66. 66.
    Rechenberg, I. (1971). Evolutionsstrategie – Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution, Ph.D. Thesis, Germany.Google Scholar
  67. 67.
    Reyes-Sierra, M. and C.A.C. Coello (2006). Multi-objective particle swarm optimizers: a survey of the state-of-the-art. International Journal of Computational Intelligence Research, 2(3), 287–308.MathSciNetGoogle Scholar
  68. 68.
    Samuelson, P. (1958). The fundamental approximation theorem of portfolio analysis in terms of means variances and higher moments. Review of Economic Studies, 25, 65–86.CrossRefGoogle Scholar
  69. 69.
    Schaerf, A (2002). Local search techniques for constrained portfolio selection problems. Computational Economics, 20(3), 177–190.MATHCrossRefGoogle Scholar
  70. 70.
    Schaffer, J.D. (1985). Multiple objective optimization with vector evaluated genetic algorithm. In: Proceedings of the First International Conference on Genetic Algorithms and their Applications, p. 93–100.Google Scholar
  71. 71.
    Schlottmann, F. and D. Seese (2004). Modern heuristics for finance problems: A survey of selected methods and applications. In Handbook of Computational and Numerical Methods in Finance (S. Rachev (Ed.)), p. 331–360, Birkhauser, Berlin.CrossRefGoogle Scholar
  72. 72.
    Schwefel, H.-P. (1974). Numerische Optimierung von Computer-Modellen, Ph.D. Thesis, Germany.Google Scholar
  73. 73.
    Sette, S. and L. Boullart (2001). Genetic programming: principles and applications. Engineering Applications of Artificial Intelligence, 14(6), 727–736.CrossRefGoogle Scholar
  74. 74.
    Shah-Hosseini, H. (2009). The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. International Journal of Bio-Inspired Computation, 1(1/2), 71–79.CrossRefGoogle Scholar
  75. 75.
    Storn, R. and K. Price (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359.MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Streichert, F., H. Ulmer and A. Zell (2003). Evolutionary algorithms and the cardinality constrained portfolio optimization problem. In: Selected Papers of the International Conference on Operations Research, p. 253–260.Google Scholar
  77. 77.
    Subbu, R., B. Bonissone, N. Eklund, S. Bollapragada and K. Chalermkraivuth (2005). Multiobjective financial portfolio design: a hybrid evolutionary approach. In: Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, p. 1722–1729.Google Scholar
  78. 78.
    Tapia, M.G.C. and C.A.C. Coello (2007). Applications of multi-objective evolutionary algorithms in economics and finance. In: Proceedings of IEEE Congress on Evolutionary Computation, p. 532–539.Google Scholar
  79. 79.
    Yang, X. (2006). Improving portfolio efficiency: A genetic algorithm approach. Computational Economics, 28, 1–14.MATHCrossRefGoogle Scholar
  80. 80.
    Yang X.-S. (2009). Firefly algorithms for multimodal optimization, In: Stochastic Algorithms: Foundations and Applications (Lecture Notes in Computer Sciences 5792), p. 169–178.Google Scholar
  81. 81.
    Yang, X. S., (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78–84.CrossRefGoogle Scholar
  82. 82.
    Yang, X.-S. and S. Deb (2009). Cuckoo search via Lévy flights. In: Proceedings of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), p. 210–214.Google Scholar
  83. 83.
    Yang, X.-S. and S. Deb (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.MATHCrossRefGoogle Scholar
  84. 84.
    Zitzler, E. and L. Thiele (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271.CrossRefGoogle Scholar
  85. 85.
    Zitzler, E., M. Laumanns and L. Thiele (2001). SPEA2: improving the strength of Pareto evolutionary algorithm. TIK-103, Department of Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electronics EngineeringAnkara UniversityAnkaraTurkey

Personalised recommendations