Skip to main content

Damage characterization in Dual-Phase steels using X-ray tomography

  • Conference paper
  • First Online:
Optical Measurements, Modeling, and Metrology, Volume 5

Abstract

In-situ tensile tests have been carried out during X-ray microtomography imaging of dual-phase steels. Void nucleation has been quantified as a function of strain and triaxiality using the obtained 3D images. The Argon's criterion of decohesion has then been used in a model for nucleation in the case where martensite plays the role of inclusions. This criterion has been modified to include the local stress field and the effect of kinematic hardening present in such an heterogeneous material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argon AS, Im J, Safoglu R, Cavity formation from inclusions in ductile fracture, Metallurgical Transactions A, Volume 6,Issue 4, pp 825-837, 1975.

    Article  Google Scholar 

  2. Goods SH, Brown LM, Nucleation of cavities by plastic-deformation – Overview, Acta Metallurgica,Volume 27, Issue 1,pp 1-15,1979.

    Article  Google Scholar 

  3. Beremin FM,Cavity formation from inclusions in ductile fracture of A508 steel, Metallurgical and Materials TransactionsA, Volume 12, Issue 5, pp 723-731,1981.

    Article  Google Scholar 

  4. Steinbrunner DL, Matlock DK, Krauss G, Void formation during tensile testing of dual phase steels, MetallurgicalTransactions A, Volume 19, Issue 3, pp 579-589,1988.

    Google Scholar 

  5. Avramovic-Cingara G, Saleh CAR, Jain M, Wilkinson DS, Void Nucleation and Growth in Dual-Phase Steel 600during Uniaxial Tensile Testing, Metallurgical and Materials Transactions A, Vlume 40, pp 3117-3127, 2009.

    Google Scholar 

  6. Tanaka K, Mori T, Nakamura T, Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix,Philosophical Magazine, Volume 21, Issue 170, pp. 267–279, 1970.

    Article  Google Scholar 

  7. Thomason PF, Ductile Fracture of Metals, Pergamon Press, Oxford, 1990.

    Google Scholar 

  8. Kwon D, Asaro RJ, A study of void nucleation, growth, and coalescence in spheroidized-1518 steel, MetallurgicalTransactions, Volume 21, Issue 1, pp 91-101, 1990.

    Google Scholar 

  9. Walsh JA, Jata KV, Starke EA, The influence of Mn dispersoid content and stress state on ductile fracture of 2134 typeAl-alloys, Acta Metallurgica, Volume 37, Issue 11, pp 2861-2871, 1989.

    Article  Google Scholar 

  10. Bugat S, Besson J, PineauA, Micromechanical modeling of the behavior of duplex stainless steels, ComputationalMaterials Science, Volume 16, Issue 1-4, 158-166, 1999.

    Google Scholar 

  11. Needleman A, A continuum model for void nucleation by inclusion debonding, Journal of Applied Mechanics, Volume54, pp 525-531, 1987.

    Google Scholar 

  12. Needleman A, Tvergaard V, An analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics ofSolids, Volume 32, Issue 6, pp 461-490, 1984.

    Article  Google Scholar 

  13. Nutt SR, Needleman A, Void nucleation at fiber ends in Al-SiC composites, Scripta Materialia, Volume 21, Issue 5, pp705-710, 1987.

    Google Scholar 

  14. Buffiere JY, Maire E, Cloetens P, Lormand G, Fougères R, Characterization of internal damage in a MMCp using x-raysynchrotron phase contrast microtomography, Acta Materialia, Volume 47, Issue 5, pp 1613-1625, 1999.

    Article  Google Scholar 

  15. Martin CF, Josserond C, Salvo L, Blandin JJ, Cloetens P, Boller E, Characterisation by X-ray micro-tomography ofcavity coalescence during superplastic deformation, Scripta Materialia, Volume 42, Issue 4, pp 375-381, 2004.

    Article  Google Scholar 

  16. Babout L, Maire E, Fougeres R, Damage initiation in model metallic materials: X-ray tomography and modelling, ActaMaterialia, Volume 52, Issue 8, pp 2475-2487, 2004.

    Article  Google Scholar 

  17. Maire E, Bouaziz O, Di Michiel M, Verdu C, Initiation and growth of damage in a dual-phase steel observed by X-raymicrotomography, Acta Materialia, Volume 56, Issue 18, pp 4954-4964, 2008.

    Article  Google Scholar 

  18. Bron F, Besson J, Pineau A, Ductile rupture in thin sheets of two grades of 2024 aluminum alloy, Materials Science andEngineering A, Volume 380, Issue 1-2, pp 356-364, 2004.

    Article  Google Scholar 

  19. Abramoff MD, Magelhaes PJ, Ram SJ, Image Processing with ImageJ, Biophotonics International, Volume 11, Issue 7,pp 36-42, 2004.

    Google Scholar 

  20. Bridgman PW, Effects of High Hydrostatic Pressure on the Plastic Properties of Metals, Revue of Modern Physics,Volume 17, Issue 1, pp 3-14, 1945.

    Article  Google Scholar 

  21. Landron C, Bouaziz O, Maire E, Characterization and modeling of void nucleation by interface decohesion in dual phasesteel, Scripta Materialia, Volume 63, Issue 10, pp 973-976, 2010.

    Article  Google Scholar 

  22. Helbert AL, Feaugas X, Clavel M, Effects of microstructural parameters and back stress on damage mechanisms inalpha/beta titanium alloys, Acta Metallurgica, Volume 46, Issue 3, 939-951, 1998.

    Google Scholar 

  23. Allain S., Bouaziz O., Microstructure based modeling for the mechanical behavior of ferrite-pearlite steels suitable tocapture isotropic and kinematic hardening, Materials Science and Engineering A, Volume496, Issue 1-2, pp 329-336, 2008.

    Google Scholar 

  24. Grange RA, Hribal CR, Porter LF, Hardness of tempered martensite in carbon and low-alloy steels, MetallurgicalTransactions A, Volume 8, Issue 11, pp 1775-1787, 1977.

    Google Scholar 

  25. Kosco JB, Koss DA, Ductile fracture of mechanically alloyed iron-yttria alloys Metallurgical Transactions A, Volume24, Issue 3, pp 681-687, 1993.

    Google Scholar 

  26. Qiu H, Mori H, Enoki M, Kishi T, Development of A Three-dimensional Model for Void Coalescence in MaterialsContaining Two Types of Microvoids,ISIJ International, Volume 39, Issue 4, pp 358-364, 1999.

    Article  Google Scholar 

  27. LeRoy G, Embury JD, Edwards G, Ashby MF, A model of ductile fracture based on the nucleation and growth of voids,Acta Metallurgica, Volume 29, Issue 8, pp 1509-1522, 1981.

    Article  Google Scholar 

  28. Kwon D, Interfacial decohesion around spheroidal carbide particles, Scripta Metallurgica, Volume 22, Issue 7, pp 1161-1164, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Landron, C., Maire, E., Adrien, J., Bouaziz, O. (2011). Damage characterization in Dual-Phase steels using X-ray tomography. In: Proulx, T. (eds) Optical Measurements, Modeling, and Metrology, Volume 5. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0228-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0228-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0227-5

  • Online ISBN: 978-1-4614-0228-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics