Advertisement

The Measurement of Cyclic Creep Behavior in Copper Thin Film Using Microtensile Testing

Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

A micro-tensile testing for studying the cyclic fatigue mechanical properties of freestanding copper thin film with thickness of sub-micrometer application for MEMS was performed to observe its mechanical response under tension-tension fatigue experiments with a variety of mean stress conditions at cyclic loading frequencies up to 20 Hz. Tensile sample loading was applied using a piezoelectric actuator. Loads were measured using a capacitance gap sensor with a mechanical coupling to the sample. The experiments were carried out with feedback to give load control on sputter deposited 300, 500 and 900 nm copper thin films. Loading cycles to failure reached over 10^6 at low mean load with a trend of decreasing cycles to failure with increasing mean load as anticipated. The cyclic fatigue results provided clear evidence for a cyclic creep rate dependent and change in failure mechanism from crack formation to extended plasticity as the mean load is decreased.

Keywords

Piezoelectric Actuator Copper Film Cyclic Creep Test Chip Copper Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, S.L., M.S. Rodgers, G. LaVigne, J.J.Sniegowski, P. Clews, D.M. Tanner, and K.A. Peterson, in Proc. 36th IEEE Int. Reliability Physics Symp. (NJ, 1998)Google Scholar
  2. 2.
    Haque, M.A. and Saif, M.T.A., “In Situ Tensile Testing of nano-scale Specimens in SEM and TEM,” EXPERIMENTAL MECHANICS, 42(1), 123–128 (2001)CrossRefGoogle Scholar
  3. 3.
    Ming-Tzer Lin, Chi-Jia Tong & Chung-Hsun Chiang “Design and Development of Sub-micron scale Specimens with Electroplated Structures for the Microtensile Testing of Thin Films” MICROSYSTEM TECHNOLOGIES (Accept JAN 2007)Google Scholar
  4. 4.
    Haque, M.A. and Saif, M.T.A., “Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM”, Sensors and Actuators A 97–98, 239-245(2002).CrossRefGoogle Scholar
  5. 5.
    Ming-Tzer Lin et al. (2006) Design an electroplated framefreestanding specimen for microtensile testing of submicron thin TaN and Cu Film, in materials, technology and reliability of low-k dielectrics and copper interconnects. Mater Res Soc Symp Proc 914, WarrendaleGoogle Scholar
  6. 6.
    D.T. Read “Tension-tension fatigue of copper thin films”. Int. J. Fatigue Vol. 20, No. 3, pp. 203–209. (1998)CrossRefGoogle Scholar
  7. 7.
    Nicholas Barbosa III, Paul El-Deiry, Richard P. Vinci “Monotonic Testing and Tension-Tension Fatigue Testing of Free-standing Al Microtensile Beams” Mat. Res. Soc. Symp. Proc. Vol. 795 © (2004)Google Scholar
  8. 8.
    Haque, M.A. and Saif, M.T.A., Sensors and Actuators A 97–98, (2002) pp.239-245.Google Scholar
  9. 9.
    Ming-Tzer Lin, Chi-Jia Tong & Kai-Shiang Shiu, Microsystems technologies, DOI  10.1007/s00542-007-0463-5
  10. 10.
    D.T. Read. Int. J. Fatigue Vol. 20, No. 3,(1998) pp. 203–209CrossRefGoogle Scholar
  11. 11.
    O. Kraft, R. Schwaiger, P. Wellner, Materials Science and Engineering A319-321 (2001) 919–923.Google Scholar
  12. 12.
    G. P. Zhang, Sun, K.H.; Zhang, B.; Gong, J.; Sun, C.; Wang, Z.G., Materials Science and Engineering A483-484 (2008)387-390.Google Scholar
  13. 13.
    R. D. Emery, G. L. Povirk, Acta Materialia 51 (2003) 2067–2078.CrossRefGoogle Scholar
  14. 14.
    R. D. Emery, G. L. Povirk, Acta Materialia 51 (2003) 2079–2087.CrossRefGoogle Scholar
  15. 15.
    Spolenak, R, Brown, W.L., Tamura, N.; MacDowell, A.A.; Celestre, R.S.; Padmore, H.A.; Valek, B.; Bravman, J.C.; Marieb, T.; Fujimoto, H.; Batterman, B.W.; Patel, J.R. Physical Review Letters, v 90, n 9, Mar 7, 2003,.Google Scholar
  16. 16.
    M. T. Lin, Paul El-Deiry, Richard R. Chromik, Nicholas Barbosa, Walter L. Brown Terry J. Delph, Richard P. Vinci, Microsyst Technol (2006) 12: 1045–1051.Google Scholar
  17. 17.
    E. Arzt, Acta Mater. 46, 5611 (1998).CrossRefGoogle Scholar
  18. 18.
    S. P. Baker, Mater. Sci. Eng. A 319–321, 16 (2001).Google Scholar
  19. 19.
    J. R. Weertman, in Nanostructured Materials: Processing, Properties, and Applications, C. C. Koch, Ed. (William Andrews, Norwich, NY, 2002).Google Scholar
  20. 20.
    M. A. Haque, M. T. A. Saif, Sens. Actuators A 97–98, 239 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Graduate Institute of Precision EngineeringNational Chung Hsing UniversityTaichungR.O.C.

Personalised recommendations