Skip to main content

Approaches Towards Avoiding Lifelong Antiretroviral Therapy in Paediatric HIV Infection

  • Chapter
  • First Online:
Hot Topics in Infection and Immunity in Children VIII

Abstract

Paediatric HIV infection is a substantial global public health problem in its own right. Approximately one in six new HIV infections worldwide arises as a result of mother-to-child transmission (MTCT). In contrast to adult infection, progression to AIDS and death is rapid in most infected children and cannot be satisfactorily predicted in the youngest children based on viral load or CD4 count. For this reason, the current revised WHO guidelines recommending antiretroviral therapy (ART) be initiated in HIV-infected children from birth, or as soon after birth as possible, are fully justified. However, this presents the daunting challenge of a life-time on ART, starting from the perinatal period. Given the major difficulties of maintaining adherence and avoiding toxicity from infancy through to adolescence, it would seem imperative to consider what alternative strategies to a life-time on ART may be considered in paediatric HIV infection, to avoid the prospect in 10 years of an epidemic of HIV-infected adolescents on failing salvage therapy regimens. Furthermore, at the current rate of growth, the number of children living with HIV will double within 5 years, and the cost of maintaining ART, together with monitoring of CD4 counts and viral load, in these numbers would be hard to sustain. This review addresses, first, the particular differences between paediatric and adult HIV infection, and the immune responses most effective in control of HIV, with specific reference to the anti-HIV CD8+ T-cell response; and, second, the ART interruption strategies currently being explored that could provide an alternative to lifelong ART for infected children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.avert.org/worldstats.htm.

  2. Violari A, Cotton MF, Gibb DM, et al. Children with HIV Early Antiretroviral Therapy (CHER) Trial. Early antiretroviral therapy and mortality among HIV-infected infants. N Eng J Med. 2008;359:2233–44.

    Article  CAS  Google Scholar 

  3. http://www.who.int/hiv/topics/paediatric/en/index.html.

  4. Meyers T, Moultrie H, Naidoo K, Cotton M, Eley B, and Sherman G. Challenges to pediatric HIV Care and Treatment in South Africa. J Infec Dis, 2007;196:S474–S481.

    Article  Google Scholar 

  5. Prendergast AJ, Tudor-Williams G, Jeena P, Burchett S and Goulder PJR. International perspectives, progress and future challenges of paediatric HIV infection. Lancet 2007.

    Google Scholar 

  6. Munoz A, Sabin CA, Phillips AN. The incubation period of AIDS. AIDS, 1997;11:S69–76.

    PubMed  Google Scholar 

  7. Biggar RJ and Rosenberg PS. HIV infection/AIDS in the US during the 1990s. Clin Infec Dis 1993;17: S219–223.

    Article  Google Scholar 

  8. Collaborative Group on AIDS Incubation and HIV Survival including the CASCADE EU Concerted Action on SeroConversion to AIDS and Death in Europe. Time from HIV-1 seroconversion to AIDS and death before widespread use of highly-active antiretroviral therapy: a collaborative re-analysis. Lancet 2000;355(9210):1131–7.

    Google Scholar 

  9. Spira R, Lepage P, Msellati P et al. Mother-to-child HIV-1 Transmission Study Group. Natural history of HIV-1 infection in children: a five-year prospective study in Rwanda. Pediatrics 1999;104: e56.

    Article  PubMed  CAS  Google Scholar 

  10. Marinda E, Humphrey JH, Iliff PJ, et al. Child mortality according to maternal and infant HIV status in Zimbabwe. Ped Infec Dis J 2007;26:519–526.

    Article  Google Scholar 

  11. Mphatswe W, Blanckenberg N, Tudor-Williams G, et al. High frequency of rapid immunological progression in African infants infected in the era of perinatal HIV prophylaxis. AIDS 2007;19;21:1253–61.

    Article  Google Scholar 

  12. Lewis DB and Wilson CB. Developmental immunology and role of host defences in fetal and neonatal susceptibility to infection. Chapter 4 in: Remington JS, Klein JO, Wilson CB and Baker CJ eds. 7th edition. 2010.

    Google Scholar 

  13. SC Darby, DW Ewart, PL Giangrande, RJ Spooner and CR Rizza, Importance of age at infection with HIV-1 for survival and development of AIDS in UK haemophilia population, Lancet 1996;347:1573–1579.

    PubMed  CAS  Google Scholar 

  14. Mayaux MJ, Burgard M, Teglas JP, Cottalorda J, Krivine A, Simon F, Puel J, Tamalet C, Dormont D, Masquelier B, Doussin A, Rouzioux C, Blanche S. Neonatal characteristics in rapidly progressive perinatally acquired HIV-1 disease. The French Pediatric HIV Infection Study Group. JAMA 1996;275(8):606–10.

    CAS  Google Scholar 

  15. Brinchmann JE, Albert J, Vartdal F. Few infected CD4+ T cells but a high proportion of replication-competent provirus copies in asymptomatic human immunodeficiency virus type 1 infection. J Virol 1991;65(4): 2019–23.

    PubMed  CAS  Google Scholar 

  16. Finkel TH, Tudor-Williams G, Banda NK, Cotton MF, Curiel T, Monks C, Baba TW, Ruprecht RM, Kupfer A. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med 1995;1(2):129–34.

    Article  PubMed  CAS  Google Scholar 

  17. Appay V, Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J Pathol 2008;214(2):231–41. Review.

    Article  PubMed  CAS  Google Scholar 

  18. Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J Infect Dis 1999;179:859–870.

    Article  PubMed  CAS  Google Scholar 

  19. Mekmullica J, Brouwers P, Charurat M, Paul M, Shearer W, Mendez H, et al. Early immunological predictors of neurodevelopmental outcomes in HIV-infected children. Clin Infect Dis 2009;48:338–346.

    Article  PubMed  Google Scholar 

  20. Paul ME, Mao C, Charurat M, Serchuck L, Foca M, Hayani K, et al. Predictors of immunologic long-term nonprogression in HIV-infected children: implications for initiating therapy. J Allergy Clin Immunol 2005;115:848–855.

    Article  PubMed  Google Scholar 

  21. Brenchley JM, Price DA, Schacker TW, Asher TE, Silvestri G, Rao S, Kazzaz Z, Bornstein E, Lambotte O, Altmann D, Blazar BR, Rodriguez B, Teixeira-Johnson L, Landay A, Martin JN, Hecht FM, Picker LJ, Lederman MM, Deeks SG & Douek DC. Microbial translocation is a cause of systenic immune activation in chronic HIV infection. Nature Medicine 2006;12:1365–1371.

    Article  PubMed  CAS  Google Scholar 

  22. Shearer WT, Quinn TC, LaRussa P et al. Viral load and disease progression in infants infected with HIV-1. Women and Infants Transmission Study Group. N Eng J Med 1997;336:1337–42.

    Article  CAS  Google Scholar 

  23. Goulder PJR and Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nature Rev Immunol 2008;8:619–630.

    Article  CAS  Google Scholar 

  24. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV infection: clues for vaccine development. Nature Reviews Immunology 2010;10:11–23.

    Article  PubMed  CAS  Google Scholar 

  25. Thobakgale CF, Ramduth D, Reddy S, et al. HIV-specific CD8+ T cell activity is detectable from birth in the majority of in utero infected infants. J Virol 2007;81:12775–84.

    Article  PubMed  CAS  Google Scholar 

  26. Ramduth D, Thobakgale CF, Mkhwanazi NP, et al. Detection of HIV-1 Gag-specific CD4+ T cell responses in acutely infected infants AIDS Res Hum Retr 2008;24:265–270.

    Article  CAS  Google Scholar 

  27. Luzuriaga K, et al. Early therapy of vertial HIV-1 infection: control of viral replication and absence of persistent HIV-specific immune responses. J Virol 2000;74:6984–6991.

    Article  PubMed  CAS  Google Scholar 

  28. Rosenberg ES, Altfeld M, Poon SP, et al. Immune control of HIV-1 after early treatment of acute infection. Nature 2000;407:523–526.

    Article  PubMed  CAS  Google Scholar 

  29. Sullender WM, et al. Humoral and cell-mediated immunity in neonates with herpes simplex virus infection. J Infec Dis 1987;155:28–37.

    Article  CAS  Google Scholar 

  30. Burchett SK, et al. Diminished IFN-gamma and lymphocyte proliferation in neonatal and postpartum primary herpes simplex virus infection. J Infec Dis 1992;165:813–818.

    Article  CAS  Google Scholar 

  31. Starr SE, et al. Impaired cellular immunity to cytomegalovirus in congenitally infected children and their mothers. J Infec Dis 1979;140:500–505.

    Article  CAS  Google Scholar 

  32. Pass, RF, et al. Specific cell-mediated immunity and the natural history of congenital infection with cytomegalovirus. J Infec Dis 1983;148:953–961.

    Article  CAS  Google Scholar 

  33. Tu, W, et al. Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J Immunol 2004;172:3260–3267.

    PubMed  CAS  Google Scholar 

  34. Mackall CL, Fleischer TA, Brown MR, et al. Age, thymopoiesis, and CD4 T-lymphocyte regeneration after intensive chemotherapy. New Eng J Med 1995;332:143–9.

    Article  PubMed  CAS  Google Scholar 

  35. Feeney ME, Draenert R, Roosevelt KA, et al. Reconstitution of virus-specific CD4 proliferative responses in pediatric HIV-1 infection. J Immunol 2003;171:6968–6975.

    PubMed  CAS  Google Scholar 

  36. Goulder PJR and Watkins DI. HIV and SIV CTL Escape: Implications for Vaccine design. Nature Reviews Immunology 2004;4:630–640.

    Article  PubMed  CAS  Google Scholar 

  37. Feeney ME, Tang Y, Pfafferott KJ, et al. HIV-1 viral escape in infancy followed by emergence of a variant-specific CTL response. J Immunol 2005;174:7524–30.

    PubMed  CAS  Google Scholar 

  38. Borrow P, Lewicki H, Hahn BH, Shaw GM and Oldstone MBA. Virus-specific CD8+ cytototoxic T lymophocyte activity associated with control of viraemia in primary HIV infection. J Virol 1994;68:6103–6110.

    PubMed  CAS  Google Scholar 

  39. Koup RA, Safrit JT, Cao Y, Andrew CA, et al. Temporal association of cellular immune responses with the initial control of viremia in primary HIV infection. J Virol 1994;68:4650–5.

    PubMed  CAS  Google Scholar 

  40. Schmitz JE, Kuroida MJ, Santra S, Sasseville VG, Simon MA et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 1999;283:857–60.

    Article  PubMed  CAS  Google Scholar 

  41. Matano T, Shibata R, Siemon C et al. Administration of anti-CD8 monoclonal antibody interferes with the clearance of chimeric SIV/HIV during primary infections of rhesus macaques. J Virol 1998;72:164–9.

    PubMed  CAS  Google Scholar 

  42. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, Blanchard J, Irwin CE, Safrit JT, Mittler J, Weinberger L, Kostrikis LG, Zhang L, Perelson AS, Ho DD: Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 1999;189:991–8.

    Article  PubMed  CAS  Google Scholar 

  43. Kiepiela P, Leslie AJ, Honeyborne I, et al. Dominant influence of HLA-B in mediating the potential co-evolution of HIV and HLA. Nature 2004;432:769–774.

    Article  PubMed  CAS  Google Scholar 

  44. Kaslow RA, Carrington M, Apple R, et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV infection. Nat Med 1996;2:405–11.

    Article  PubMed  CAS  Google Scholar 

  45. Goulder PJR, Phillips RE, Colbert R, et al. Late escape from an immunodominant cytotoxic T lymphocyte response associated with progression to AIDS. Nature Medicine 1997;3:212–217

    Article  PubMed  CAS  Google Scholar 

  46. Migueles SA, Sabbaghian MS, Shupert WL et al. HLA-B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long-term non-progressors. PNAS 2000;97:2709–14.

    Article  PubMed  CAS  Google Scholar 

  47. O’Brien SJ, Gao X and Carrington M. HLA and AIDS: a cautionary tale. Trends in Molecular Medicine 2001;7: 379–81.

    Article  PubMed  Google Scholar 

  48. Lazaryan A, Lobashevsky E, Mulenga J, Karita E, Allen S, Tang J et al. Human leukocyte antigen B58 supertype and HIV infection in native Africans. J Virol 2006;80:6056–60.

    Article  PubMed  CAS  Google Scholar 

  49. Shrestha S, Aissani B, Song W, Wilson CM, Kaslow R and Tang J. Host genetics and HIV viral set-point in African-Americans. AIDS 2009;23:673–7.

    Article  PubMed  Google Scholar 

  50. Koehler, R. N., A. M. Walsh, E. Saathoff, S. Tovanabutra, M. A. Arroyo, J. R. Currier, L. Maboko, M. Hoelsher, M. L. Robb, N. L. Michael, F. E. McCutchan, J. H. Kim, and G. H. Kijak. 2010. Class I HLA-A*7401 Is Associated with Protection from HIV-1 Acquisition and Disease progression in Mbeya, Tanzania. J Infec Dis 2010;202:1562–6.

    Article  CAS  Google Scholar 

  51. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Carrington M, Nelson GW, Martin MP et al. Science 1999;283:1748–52.

    Article  PubMed  CAS  Google Scholar 

  52. Gao X, Nelson GW, Karacki P, et al. Effect of a single amino acid change in MHC class I molecules on the rate of HIV disease progression. New Eng J Med 2001;344:1668–75.

    Article  PubMed  CAS  Google Scholar 

  53. Ngumbela KC, Day CL, Mncube Z, et al. Targeting of a CD8 T Cell Env Epitope Presented by HLA-B*5802 Is Associated with Markers of HIV Disease Progression and Lack of Selection Pressure. AIDS Res Hum Retroviruses 2008;24(1):72–82.

    Article  PubMed  CAS  Google Scholar 

  54. Fellay J, Shianna KV, Ge D, et al. A whole-genome study of major determinants for host control of HIV-1. Science 317:944–947.

    Google Scholar 

  55. Fellay J, Ge D, Shianna KV et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet 2009,5:e1000791.

    Article  PubMed  Google Scholar 

  56. Pereyra F, et al, The International Controllers Study. The major determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010;Nov 4. [epub ahead of print].

    Google Scholar 

  57. Goulder PJR, Bunce M, Krausa P et al. Novel, cross-restricted, conserved and immunodominant cytotoxic T lymphocyte epitopes in slow p[ropgressors in HIV-1 infection. AIDS Res Hum Retr 1996;10:1691–8.

    Article  Google Scholar 

  58. Payne RP, Kløverpris H, Sacha JB, et al. Efficacious early antiviral activity of HIV Gag- and Pol-specific HLA-B*2705-restricted CD8+ T-cells. J Virol 2010;84:10543–57.

    Article  PubMed  CAS  Google Scholar 

  59. Kiepiela P, Ngumbela K, Thobakgale C, et al. CD8+ T cell responses to different HIV proteins have discordant associations with viral load. Nature Medicine 2007;13:46–54.

    Article  PubMed  CAS  Google Scholar 

  60. Honeyborne I, Prendergast A, Pereyra F, et al. Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple Gag-specific CD8+ T-cell epitopes J Virol 2007;81:3667–72.

    Article  PubMed  CAS  Google Scholar 

  61. Streeck H, Lichterfeld M, Alter G et al. Recognition of a defined region within p24 Gag by CD8+ T cells during primary HIV-1 infection in individuals expressing protectiove HLA class I alleles. J Virol 2007;81:7725–31.

    Article  PubMed  CAS  Google Scholar 

  62. Jin X, Gao X, Ramanathan M Jr, et al. HIV-specific CD8+_ T-cell responses for groups of HIBV-infected individuals with different HLA-B*35 genotypes. J Virol 2002;76:12603–10.

    Article  PubMed  CAS  Google Scholar 

  63. Crawford H, Lumm W, Leslie A, et al. Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J Exp Med 2009;206:909–21.

    PubMed  CAS  Google Scholar 

  64. Leslie A, Pfafferott KJ, Chetty P, et al. HIV evolution: CTL escape mutation and reversion after transmission. Nature Medicine 2004;10:282–9.

    Article  PubMed  CAS  Google Scholar 

  65. Martinez-Picado J, Prado JG, Fry EE, et al. Fitness cost of escape mutation in p24 Gag in association with control of HIV-1. J Virol 2006;80:3617.

    Article  PubMed  CAS  Google Scholar 

  66. Brockman MA, Schneidewind A, Lahaie M, et al. Escape and compensation from early HLA-B57-mediated cytotoxic T-lymphocyte pressure on human immunodeficiency virus type 1 Gag alter capsid interactions with cyclophilin A. J Virol 2007;81:12608–18.

    Article  PubMed  CAS  Google Scholar 

  67. Schneidewind A, Brockman MA, Yang R, et al. Escape from the Dominant HLA-B27 Restricted CTL Response in Gag is Associated with a Dramatic Reduction in HIV-1 Replication. J Virol 2007;81:12382–93.

    Article  PubMed  CAS  Google Scholar 

  68. Crawford H, Prado JG, Leslie A, et al. Compensatory mutation partially restores fitness and delays reversion of escape mutation with the immunodominant HLA-B*5703-restricted Gag epitope in HIV-1 infection. J Virol 2007;81:8346–51.

    Article  PubMed  CAS  Google Scholar 

  69. Prado J, Honeyborne I, Brierley I, et al. Functional consequences of HIV-1 escape from an HLA-B*13-restricted CD8+ T-cell Epitope in the p1 Gag protein. J Virol 2009;83:1018–1025.

    Article  PubMed  CAS  Google Scholar 

  70. Wright JK, Brumme ZL, Carlson JM, et al. Gag-Protease-Mediated Replication Capacity in HIV-1 Subtype C Chronic Infection: Associations with HLA Type and Clinical Parameters. J Virol 2010;84:10820–31.

    Article  PubMed  CAS  Google Scholar 

  71. Matthews PC, Prendergast AJ, Leslie AJ, et al. Central role of reverting mutations in HLA associations with HIV viral setpoint. J Virol 2008;82:8548–59.

    Article  PubMed  CAS  Google Scholar 

  72. Troyer RM, McNevin J, Liu Y, et al. Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte response. PLoS Pathogens 2009;5(4):e1000365.

    Article  PubMed  Google Scholar 

  73. Julg B, Williams KL, Reddy S, et al. Enhanced anti-HIV functional activity associated with Gag-specific CD8 T-cell responses. J Virol 2010;84:5540–9.

    Article  PubMed  CAS  Google Scholar 

  74. Pereyra F, Addo MM, Kaufmann DE, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 2008;197(4):563–71.

    Article  PubMed  Google Scholar 

  75. Riviere Y, McChesney MB, Porrot F, et al. Gag-specific cytotoxic responses to HIV type 1 are associated with a decreased risk of progression to AIDS-related complex or AIDS. AIDS Res Hum Retr 1995;11(8):903–7.

    Article  CAS  Google Scholar 

  76. Klein MR, van Baalen CA, Holwerda AM, et al. Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med 1995181(4):1365–72.

    Article  PubMed  CAS  Google Scholar 

  77. Edwards, BH, Bansal A, Sabbaj S, et al. Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma. J Virol 2002;76:2298–305.

    Article  PubMed  CAS  Google Scholar 

  78. Friedrich, TC, Doods EJ, Yant LJ, et al. Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nat Med 2004;10:275–81.

    Article  PubMed  CAS  Google Scholar 

  79. Matano T, Kobayashi M, Igarashi H, et al. Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. J Exp Med 2004;199(12):1709–18.

    Article  PubMed  CAS  Google Scholar 

  80. Kobayashi M, Igarashi H, Takeda A, et al. Reversion in vivo after inoculation of a molecular proviral DNA clone of simian immunodeficiency virus with a cytotoxic-T-lymphocyte escape mutation. J Virol 2005;79(17):11529–32.

    Article  PubMed  CAS  Google Scholar 

  81. Maness NJ, Yant LJ, Chung C, et al. Comprehensive immunological evaluation reveals surprisingly few differences between elite controller and progressor Mamu-B*17-positive SIV-infected Rhesus macaques. J Virol 200882:5245–54.

    Article  PubMed  CAS  Google Scholar 

  82. Friedrich TC, Frye CA, Yant LJ, O’Connor DH et al. Extraepitopic compensatory substitutions partially restore fitness to SIV variants that escape from an immunodominant CTL response. J Virol 2004;78:2581–5.

    Article  PubMed  CAS  Google Scholar 

  83. Sacha JB, Chung C, Loffredo JT, et al. Gag-specific CD8+ T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression. J Immunol 2007;178:2746–54.

    PubMed  CAS  Google Scholar 

  84. Collins KL, Chen BK, Kalms SA, et al. HIV-1 Nef protein protects infected primary cells against killing by cytotopxic T lymphocytes. Nature 1998;39:397–401.

    Google Scholar 

  85. Maness NJ, Valentine LE, May GE, Reed J, Piaskowski SM, Soma T, Furlott J, Rakasz EG, Friedrich TC, Price DA, Gostick E, Hughes AL, Sidney J, Sette A, Wilson NA and Wakins DI. AIDS virus specific CD8+ lymphocytes against an immunodominant cryptic epitope select for viral escape. J Exp Med 2007;204:2505–12.

    Article  PubMed  CAS  Google Scholar 

  86. Loffredo JT, Friedrich TC, Leon EJ, Stephany JJ, Rodriguez DS, Spencer SP, Bean AT, Beal DR, Burwitz BJ, Rudersdorf RA, Wallace LT, Piaskowski SM, May GE, Sidney J, Gostick E, Wilson NA, Price DA, Kallas EG, Sette A, and Wakins DI. CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08 bound epitoes and select for widespread viral variation. PLoS ONE 2007;2:e1152.

    Article  PubMed  Google Scholar 

  87. Mackedonas G, Hutnick N, Haney D et al. Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human T-cells. PLos Path 2010;5:e1000798.

    Article  Google Scholar 

  88. Hersperger AR, Pereyra F, Nason M, et al. Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog. 2010;27;6(5):e1000917.

    Article  PubMed  Google Scholar 

  89. Betts MR, Nason MC, West SM, et al. HIV non-progressors preferentially maintain highly functional HIV-specific CD8+ T-cells. Blood 2006;107:4781–9.

    Article  PubMed  CAS  Google Scholar 

  90. Almeida JR, Sauce D, Price DA, et al. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV suppressive activity. Blood 2009;113:6351–60.

    Article  PubMed  CAS  Google Scholar 

  91. Migueles SA, Osborne CM, Royce C et al. Lytic granule loading of CD8+ T- cells is required for HIV-infected cell elimination associuated with immune control. Immunity 2008;29:1009–21.

    Article  PubMed  CAS  Google Scholar 

  92. Martin MP, Gao X, Lee JH, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nature Genetics 2002;31:429–434.

    PubMed  CAS  Google Scholar 

  93. Martin MP, Qi Y, Gao X, et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nature Genetics 2007;39:1114–9.

    Article  PubMed  Google Scholar 

  94. Altfeld M and Goulder PJR. Unleashed natural killers hinder HIV. Nature Genetics 2007;39:708–710.

    Article  PubMed  CAS  Google Scholar 

  95. Ferrand RA, Corbett EL, Wood R, et al. AIDS among older children and adolescents in Southern Africa: projecting the time course and magnitude of the epidemic. AIDS 2009;23:2039–46.

    Article  PubMed  Google Scholar 

  96. Thobakgale CF, Prendergast A, Crawford H, et al. Impact of HLA in Mother and Child on Paediatric HIV-1 disease progression. J Virol 2009;83:10234–44.

    Article  PubMed  CAS  Google Scholar 

  97. Leslie A, Matthews PC, Listgarten J, et al. Additive contribution of HLA class I alleles in the immune control of HIV-1 infection. J Virol 2010;84:9879–88.

    Article  PubMed  CAS  Google Scholar 

  98. Sperling RS, Shapiro DE, Coombs RW et al. Maternal viral load, zidovudine treatment, and the risk of transmission of HIV-1 from mother to infant. New Eng J Med 1996;335:1621–1629.

    Article  PubMed  CAS  Google Scholar 

  99. Cao Y, Krogstad P, Korber BT et al. Maternal HIV-1 viral load and vertical transmission of infection: The Ariel Project and prevention of HIV transmission form mother to infant. Nat Med 1997;3:549–552.

    Article  PubMed  CAS  Google Scholar 

  100. Goulder PJR, Brander C, Tang Y, et al. Evolution and transmission of stable CTL escape mutants in HIV infection. Nature 2001;412:334–8.

    Article  PubMed  CAS  Google Scholar 

  101. Goepfert P, Lumm W, Farmer P, et al. Transmission of HIV-1 Gag immune escape mutations is associated with reduced viral load in linked recipients. J Exp Med 2008;205:1009–17.

    Article  PubMed  CAS  Google Scholar 

  102. Prado JG, Prendergast A, Thobakgale C, et al. Replicative capacity of human immunodeficiency virus type 1 transmitted from mother to child is associated with pediatric disease progression rate. J Virol 2010;84:492–502.

    Article  PubMed  CAS  Google Scholar 

  103. Kaufmann DE, Lichterfeld M, Altfeld M et al. Supervised treatment interruption fails to control HIV infection. PLoS Medicine 2004;1:e36.

    Article  PubMed  Google Scholar 

  104. Markowitz M, Jin X, Hurley A, Simon V, Ramratnam B, et al. (2002) Discontinuation of antiretroviral therapy commenced early during the course of human immunodeficiency virus type 1 infection, with or without adjunctive vaccination. J Infect Dis 186:634–643.

    Article  PubMed  CAS  Google Scholar 

  105. El-Sadr WM, Lundgren JD, Neaton JD, et al. The Strategies for Management of Antiretroviral Therapy (SMART) Study Group. CD4+ count-guided interruption of antiretroviral treatment. N Eng J Med 2006;355: 2283–2296.

    Article  CAS  Google Scholar 

  106. Prendergast AJ, Oral presentation, 14th Conference on Retroviruses and Opportunistic Infections 2008.

    Google Scholar 

  107. Paediatric European Network for Treatment of AIDS. Response to planned treatment interruptions in HIV infection varies across childhood. AIDS 2010;24:231–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. R. Goulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goulder, P.J.R., Prendergast, A.J. (2012). Approaches Towards Avoiding Lifelong Antiretroviral Therapy in Paediatric HIV Infection. In: Curtis, N., Finn, A., Pollard, A. (eds) Hot Topics in Infection and Immunity in Children VIII. Advances in Experimental Medicine and Biology, vol 719. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0204-6_3

Download citation

Publish with us

Policies and ethics