Skip to main content

A Population Network Model of Neuronal and Neurotransmitter Interactions Regulating Sleep–Wake Behavior in Rodent Species

  • Chapter
Sleep and Anesthesia

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI,volume 15))

  • 1440 Accesses

Abstract

Mammalian sleep and wake states are controlled by transitions in the activation levels of brainstem and hypothalamic neuronal nuclei that are proposed to form a sleep–wake regulatory network. Circadian variation in mammalian sleep–wake patterning is presumed to occur through modulation of the neuronal populations composing the sleep–wake regulatory network by the circadian pacemaker in the suprachiasmatic nucleus. Many of the key neuronal populations involved in sleep–wake and circadian regulation are conserved across mammalian species, suggesting that perturbations of a single network structure can produce the reported variability in sleep–wake behavior across species and across the 24 h day. We recently introduced a dynamic, mathematical model of the mammalian sleep–wake regulatory network using a novel modeling formalism that describes both the activity levels of each neuronal population and the release of their associated neurotransmitters in postsynaptic targets (Diniz Behn and Booth in J. Neurophysiol. 103:1937–1953, 2010). Using a specific network architecture, this model network captured dynamical patterns of state-dependent neuronal activity and state-dependent concentrations of key neurotransmitters to produce patterns of wake, NREM sleep, and REM sleep consistent with rat sleep in the light period. In this chapter, we extended our sleep–wake regulatory network model to include physiologically identified inputs from the SCN in order to investigate mechanisms for the circadian variation of rat sleep–wake behavior. In addition, we identified model parameters that could be modified to produce mouse sleep–wake behavior and its circadian modulation. By keeping the network structure, including the sites of action of circadian effects, fixed between species, we identified both the flexibility and the limitations of the prescribed network structure to account for differences in sleep–wake patterning across the 24 h day and across species. Our analysis of model results illustrated how specific components of network architecture dictate dynamic interactions influencing maintenance of sleep–wake states and transitions between states, and it provided insights into mechanisms through which the network can generate the range of sleep–wake patterning observed with circadian variation and across mammalian species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at ftp://ftp.math.pitt.edu/pub/bardware.

References

  • Abrahamson EE, Leak RK, Moore RY (2001) The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. Neuroreport 12:435–440

    Article  PubMed  CAS  Google Scholar 

  • Arnsten AF, Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306:9–18

    Article  PubMed  CAS  Google Scholar 

  • Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep–waking cycle. J Neurosci 1:876–886

    PubMed  CAS  Google Scholar 

  • Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep–wake regulation. Prog Neurobiol 73:379–396

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Centurion C, Gerashchenko D, Shiromani P (2007) Effects of saporin-induced lesions of three arousal populations on daily levels of sleep and wake. J Neurosci 27:14,041–14,048

    Article  CAS  Google Scholar 

  • Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW (2008) Characterization of gabaergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in gad67-green fluorescent protein knock-in mice. Eur J Neurosci 27:352–363

    Article  PubMed  Google Scholar 

  • Burlet S, Tyler CJ, Leonard CS (2002) Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci 22:2862–2872

    PubMed  CAS  Google Scholar 

  • Carskadon MA, Dement WC (2000) Normal human sleep: An overview. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, New York, pp 15–25

    Google Scholar 

  • Chamberlin NL, Arrigoni E, Chou TC, Scammell TE, Greene RW, Saper CB (2003) Effects of adenosine on gabaergic synaptic inputs to identified ventrolateral preoptic neurons. Neuroscience 119:913–918

    Article  PubMed  CAS  Google Scholar 

  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J (2003) Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 23:10,691–10,702

    CAS  Google Scholar 

  • Dai J, Swaab DF, Buijs RM (1997) Distribution of vasopressin and vasoactive intestinal polypeptide (vip) fibers in the human hypothalamus with special emphasis on suprachiasmatic nucleus efferent projections. J Comp Neurol 383:397–414

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    Google Scholar 

  • Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6:1086–1090

    Article  PubMed  CAS  Google Scholar 

  • Deco G, Jirsa VK, Robinson PA, Breakspear M, Friston K (2008) The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput Biol 4:e1000,092

    Article  Google Scholar 

  • Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: Implications for the circadian control of behavioural state. Neuroscience 130:165–183

    Article  PubMed  CAS  Google Scholar 

  • Dijk DJ, Kronauer RE (1999) Commentary: models of sleep regulation: successes and continuing challenges. J Biol Rhythms 14:569–573

    PubMed  CAS  Google Scholar 

  • Diniz Behn CG, Booth V (2010) Simulating microinjection experiments in a novel model of the rat sleep–wake regulatory network. J Neurophysiol 103:1937–1953

    Article  PubMed  Google Scholar 

  • Diniz Behn CG, Brown EN, Scammell TE, Kopell NJ (2007) A mathematical model of network dynamics governing mouse sleep–wake behavior. J Neurophysiol 97:3828–3840

    Article  Google Scholar 

  • Ermentrout GB (1998) Neural networks as spatio-temporal pattern forming systems. Rep Prog Phys 61:355–430

    Article  Google Scholar 

  • Espana RA, Reis KM, Valentino RJ, Berridge CW (2004) Organization of hypocretin/orexin efferents to locus coeruleus and basal forebrain arousal-related structures. J Comp Neurol 481:160–178

    Article  Google Scholar 

  • Franken P, Malafosse A, Tafti M (1999) Genetic determinants of sleep regulation in inbred mice. Sleep 22:155–169

    PubMed  CAS  Google Scholar 

  • Gallopin T, Luppi PH, Cauli B, Urade Y, Rossier J, Hayaishi O, Lambolez B, Fort P (2005) The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via a2a receptors in the ventrolateral preoptic nucleus. Neuroscience 134:1377–1390

    Article  PubMed  CAS  Google Scholar 

  • Gervasoni D, Darracq L, Fort P, Souliere F, Chouvet G, Luppi PH (1998) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10:964–970

    Article  PubMed  CAS  Google Scholar 

  • Gillette MU, Reppert SM (1987) The hypothalamic suprachiasmatic nuclei: circadian patterns of vasopressin secretion and neuronal activity in vitro. Brain Res Bull 19:135–139

    Article  PubMed  CAS  Google Scholar 

  • Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    Article  PubMed  CAS  Google Scholar 

  • Horvath T, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff T, van Den Pol A (1999) Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol 415:145–159

    Article  PubMed  CAS  Google Scholar 

  • Hu WP, Li JD, Zhang C, Boehmer L, Siegel JM, Zhou QY (2007) Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep 30:247–256

    PubMed  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38

    Article  PubMed  CAS  Google Scholar 

  • Jodo E, Chiang C, Aston-Jones G (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83:63–79

    Article  PubMed  CAS  Google Scholar 

  • Kriegsfeld LJ, Leak RK, Yackulic CB, LeSauter J, Silver R (2004) Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): an anterograde and retrograde analysis. J Comp Neurol 468:361–379

    Article  PubMed  Google Scholar 

  • Lo CC, Chou T, Penzel T, Scammell TE, Strecker RE, Stanley HE, Ivanov P (2004) Common scale-invariant patterns of sleep–wake transitions across mammalian species. Proc Natl Acad Sci USA 101:17,545–17,548

    CAS  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441:589–594

    Article  PubMed  CAS  Google Scholar 

  • Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Fort P (2006) Paradoxical (rem) sleep genesis: the switch from an aminergic-cholinergic to a gabaergic-glutamatergic hypothesis. J Physiol (Paris) 100:271–283

    Article  CAS  Google Scholar 

  • Lydic R, Baghdoyan HA (1993) Pedunculopontine stimulation alters respiration and increases ACh release in the pontine reticular formation. Am J Physiol 264:R544–554

    PubMed  CAS  Google Scholar 

  • Lydic R, Baghdoyan HA (2005) Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology 103:1268–1295

    Article  PubMed  Google Scholar 

  • Massaquoi SG, McCarley RW (1992) Extension of the limit cycle reciprocal interaction model of REM cycle control. An integrated sleep control model. J Sleep Res 1:138–143

    Article  PubMed  Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Rev 49:429–454

    Article  PubMed  Google Scholar 

  • Mochizuki T, Crocker A, McCormack S, Yanagisawa M, Sakurai T, Scammell TE (2004) Behavioral state instability in orexin knock-out mice. J Neurosci 24:6291–6300

    Article  PubMed  CAS  Google Scholar 

  • Morairty S, Rainnie D, McCarley R, Greene R (2004) Disinhibition of ventrolateral preoptic area sleep-active neurons by adenosine: a new mechanism for sleep promotion. Neuroscience 123:451–457

    Article  PubMed  CAS  Google Scholar 

  • Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273:R451–455

    PubMed  CAS  Google Scholar 

  • Phillips AJ, Robinson PA (2007) A quantitative model of sleep–wake dynamics based on the physiology of the brainstem ascending arousal system. J Biol Rhythms 22:167–179

    Article  PubMed  CAS  Google Scholar 

  • Rempe MJ, Best J, Terman D (2010) A mathematical model of the sleep/wake cycle. J Math Biol 60(5):615–644

    Article  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731

    Article  PubMed  CAS  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437:1257–1263

    Article  PubMed  CAS  Google Scholar 

  • Sapin E, Lapray D, Berod A, Goutagny R, Leger L, Ravassard P, Clement O, Hanriot L, Fort P, Luppi PH (2009) Localization of the brainstem gabaergic neurons controlling paradoxical (REM) sleep. PLoS ONE 4:e4272

    Article  PubMed  Google Scholar 

  • Savage VM, West GB (2007) A quantitative, theoretical framework for understanding mammalian sleep. Proc Natl Acad Sci USA 104:1051–1056

    Article  PubMed  CAS  Google Scholar 

  • Schwartz WJ, Reppert SM, Eagan SM, Moore-Ede MC (1983) In vivo metabolic activity of the suprachiasmatic nuclei: a comparative study. Brain Res 274:184–187

    Article  PubMed  CAS  Google Scholar 

  • Siegel JM (2005) Clues to the functions of mammalian sleep. Nature 437:1264–1271

    Article  PubMed  CAS  Google Scholar 

  • Stephan FK, Berkley KJ, Moss RL (1981) Efferent connections of the rat suprachiasmatic nucleus. Neuroscience 6:2625–2641

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New York

    Google Scholar 

  • Sterman MB, Knauss T, Lehmann D, Clemente CD (1965) Circadian sleep and waking patterns in the laboratory cat. Electroencephalogr Clin Neurophysiol 19:509–517

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Whitefield S, Rusak B, Semba K (2001) Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. Eur J Neurosci 14:1257–1274

    Article  PubMed  CAS  Google Scholar 

  • Tamakawa Y, Karashima A, Koyama Y, Katayama N, Nakao M (2006) A quartet neural system model orchestrating sleep and wakefulness mechanisms. J Neurophysiol 95:2055–2069

    Article  PubMed  Google Scholar 

  • Thakkar MM, Strecker RE, McCarley RW (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J Neurosci 18:5490–5497

    PubMed  CAS  Google Scholar 

  • van Twyver H (1969) Sleep patterns of five rodent species. Physiol Behav 4:901–905

    Article  Google Scholar 

  • Weitzman ED, Czeisler CA, Zimmerman JC, Ronda J (1980) The timing of REM sleep and its relation to spontaneous awakenings during temporal isolation in man. Sleep Res 9:280

    Google Scholar 

  • Wexler DB, Moore-Ede MC (1985) Circadian sleep–wake cycle organization in squirrel monkeys. Am J Physiol 248:R353–362

    PubMed  CAS  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24

    Article  PubMed  CAS  Google Scholar 

  • Zepelin H, Siegel J, Tobler I (2005) Mammalian sleep. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 4th edn. Elsevier/Saunders, Philadelphia, pp 91–100

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Booth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Diniz Behn, C.G., Booth, V. (2011). A Population Network Model of Neuronal and Neurotransmitter Interactions Regulating Sleep–Wake Behavior in Rodent Species. In: Hutt, A. (eds) Sleep and Anesthesia. Springer Series in Computational Neuroscience, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0173-5_5

Download citation

Publish with us

Policies and ethics