Skip to main content

Building Neurocognitive Networks with a Distributed Functional Architecture

  • Conference paper
From Brains to Systems

Abstract

In the past few decades, behavioral and cognitive science have demonstrated that many human behaviors can be captured by low-dimensional observations and models, even though the neuromuscular systems possess orders of magnitude more potential degrees of freedom than are found in a specific behavior. We suggest that this difference, due to a separation in the time scales of the dynamics guiding neural processes and the overall behavioral expression, is a key point in understanding the implementation of cognitive processes in general. In this paper we use Structured Flows on Manifolds (SFM) to understand the organization of behavioral dynamics possessing this property. Next, we discuss how this form of behavioral dynamics can be distributed across a network, such as those recruited in the brain for particular cognitive functions. Finally, we provide an example of an SFM style functional architecture of handwriting, motivated by studies in human movement sciences, that demonstrates hierarchical sequencing of behavioral processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tschacher, W., Dauwalder, J.-P.: The Dynamical Systems Approach to Cognition. World Scientific, Singapore (2003)

    Google Scholar 

  2. Bernstein, N.: The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  3. Breakspear, M., Jirsa, V.K.: Neuronal Dynamics and Brain Connectivity. Springer, Berlin (2007)

    Google Scholar 

  4. Bressler, S.L.: Neurocognitive networks. Scholarpedia 3(2), 1567 (2008)

    Article  Google Scholar 

  5. Bressler, S.L., Tognoli, E.: Operational principles of neurocognitive networks. Int. J. Psychophysiol. 60, 139–148 (2006)

    Article  PubMed  Google Scholar 

  6. Buchanan, J.J., Kelso, J.A.S., de Guzman, G.: Self-organization of trajectory formation. Biol. Cybern. 76(4), 257–273 (1997)

    Article  PubMed  CAS  Google Scholar 

  7. Bullock, D., Grossberg, S., Mannes, C.: A neural network model for cursive script production. Biol. Cybern. 70, 15–28 (1993)

    Article  Google Scholar 

  8. Ditzinger, T., Haken, H.: Oscillations in the perception of ambiguous patterns. Biol. Cybern. 61, 279–287 (1989)

    Article  Google Scholar 

  9. Dodel, S.M., Pillai, A.S., Fink, P.W., Muth, E.R., Stripling, R., Schmorrow, D.D., Cohn, J.V., Jirsa, V.K.: Observer-independent dynamical measures of team coordination and performance. In: Danion, F., Latash, M.L. (eds.) Motor Control: Theories, Experiments, and Applications, pp. 72–101. Oxford University Press, London (2010)

    Google Scholar 

  10. Edelman, G.M., Gally, J.A.: Degeneracy and complexity in biological systems. PNAS 98(24) (2001)

    Google Scholar 

  11. Fuster, J.M.: Cortex and Mind: Unifying Cognition. Oxford University Press, London (2005)

    Google Scholar 

  12. Giunti, M.: Dynamical Models of Cognition in Mind as Motion. MIT Press, Cambridge (1998). Chap. 18

    Google Scholar 

  13. Grossberg, S.: Biological competition: Decision rules, pattern formation, and oscillations. Proc. Natl. Acad. Sci. USA 77, 2338–2342 (1980)

    Article  PubMed  CAS  Google Scholar 

  14. Haken, H.: Synergetics: Introduction and Advanced Topics. Springer, Berlin (2004)

    Google Scholar 

  15. Huys, R., Smeeton, N.J., Hodges, N.J., Beek, P.J., Williams, A.M.: On the dynamic information underlying visual anticipation skill. Atten. Percept. Psychophys. 70, 1217–1234 (2008)

    Google Scholar 

  16. Jirsa, V.K., Kelso, J.A.S.: The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. J. Mot. Behav. 37(1), 35–51 (2005)

    Article  PubMed  Google Scholar 

  17. Jirsa, V.K., Mersmann, J.: Patent Application (2006)

    Google Scholar 

  18. Kelso, J.A.S.: Dynamic Patterns. MIT Press, Cambridge (1995)

    Google Scholar 

  19. Krupa, M.: Robust heteroclinic cycles. J. Nonlinear Sci. 7, 129–176 (1997)

    Article  Google Scholar 

  20. Krupa, M., Melbourne, I.: Asymptotic stability of heteroclinic cycles in systems with symmetry. Ergod. Theory Dyn. Syst. 15, 121–147 (1995)

    Article  Google Scholar 

  21. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10(2) (2009)

    Google Scholar 

  22. Lashley, K.S.: The Problem of Serial Order in Behavior. Wiley, New York (1951)

    Google Scholar 

  23. Maturana, H.R., Varela, F.J.: Autpoiesis and Cognition: The Realization of the Living. Springer, Berlin (1991)

    Google Scholar 

  24. Morasso, Mussa-Ivaldi, F.A.: Trajectory formation and handwriting, a computational model. Biol. Cybern. 45, 131–142 (1982)

    Article  PubMed  CAS  Google Scholar 

  25. Mussa-Ivaldi, F.A., Bizzi, E.: Motor learning through the combination of primitives. Philos. Trans. R. Soc. Lond. A 355, 1755–1769 (2000)

    Article  CAS  Google Scholar 

  26. Fink, P.W., Kelso, J.A.S., Jirsa, V.K., de Guzman, G.: Recruitment of degrees of freedom stabilizes coordination. J. Exp. Psychol. Hum. Percept. Perform. 26(2), 671–692 (2000)

    Article  PubMed  CAS  Google Scholar 

  27. Perdikis, D., Huys, R., Jirsa, V.: Complex processes from dynamical architectures with time-scale hierarchy Brezina V. PLoS ONE 6(2) (2011). Available at: http://dx.plos.org/10.1371/journal.pone.0016589.

  28. Pillai, A.S.: Structured flows on manifolds: Distributed functional architectures; fulltext available at: http://purl.fcla.edu/fau/77649. Ph.D. thesis, Florida Atlantic University (2008)

  29. Pillai, A.S., Jirsa, V.K.: Structured flows on manifolds: Distributed functional architectures (In preparation)

    Google Scholar 

  30. Port, R.F., van Gelder, T. (eds.): Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1998)

    Google Scholar 

  31. Rabinovich, M., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability and decision making. PLoS Comput. Biol. 4, 1000072 (2008)

    Article  Google Scholar 

  32. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78(4) (2006)

    Google Scholar 

  33. Seliger, P., Tsimring, L.S., Rabinovich, M.I.: Dynamics-based sequential memory: winnerless competition of patterns. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 67(1 Pt 1), 011905 (2003)

    Article  Google Scholar 

  34. Spivey, M.: The Continuity of Mind. Oxford University Press, London (2008)

    Google Scholar 

  35. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory iteractions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marmaduke Woodman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Woodman, M. et al. (2011). Building Neurocognitive Networks with a Distributed Functional Architecture. In: Hernández, C., et al. From Brains to Systems. Advances in Experimental Medicine and Biology, vol 718. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0164-3_9

Download citation

Publish with us

Policies and ethics