Skip to main content

Emergence of Small-World Structure in Networks of Spiking Neurons Through STDP Plasticity

  • Conference paper
From Brains to Systems

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 718))

Abstract

In this work, we use a complex network approach to investigate how a neural network structure changes under synaptic plasticity. In particular, we consider a network of conductance-based, single-compartment integrate-and-fire excitatory and inhibitory neurons. Initially the neurons are connected randomly with uniformly distributed synaptic weights. The weights of excitatory connections can be strengthened or weakened during spiking activity by the mechanism known as spike-timing-dependent plasticity (STDP). We extract a binary directed connection matrix by thresholding the weights of the excitatory connections at every simulation step and calculate its major topological characteristics such as the network clustering coefficient, characteristic path length and small-world index. We numerically demonstrate that, under certain conditions, a nontrivial small-world structure can emerge from a random initial network subject to STDP learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418–425 (2004)

    Article  PubMed  Google Scholar 

  2. Reijneveld, J.C., Ponten, S.C., Berendse, H.W., Stam, C.J.: The application of graph theoretical analysis to complex networks in the brain. Clin. Neurophysiol. 118, 2317–2331 (2007)

    Article  PubMed  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev., Neurosci. 10(3), 186–198 (2009)

    Article  CAS  Google Scholar 

  4. Gomez Portillo, I.J., Gleiser, P.M.: An adaptive complex network model for brain functional networks. PLoS ONE 4(9), e6863 (2009). doi:10.1371/journal.pone.0006863

    Article  PubMed  Google Scholar 

  5. Sporns, O., Honey, C.J.: Small worlds inside big brains. Proc. Natl. Acad. Sci. USA 103(51), 19219–19220 (2006)

    Article  PubMed  CAS  Google Scholar 

  6. Yu, S., Huang, D., Singer, W., Nikolic, D.: A small world of neuronal synchrony. Cereb. Cortex 18(12), 2891–2901 (2008)

    Article  PubMed  Google Scholar 

  7. Bassett, D.S., Bullmore, E.: Small-world brain networks. Neuroscientist 10, 512–523 (2006)

    Article  Google Scholar 

  8. Sporns, O., Tononi, G., Edelman, G.M.: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw. 13(8–9), 909–922 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. Tononi, G., Edelman, G.M., Sporns, O.: Complexity and coherency: integrating information in the brain. Trends Cogn. Sci. 2, 474–484 (1998)

    Article  PubMed  CAS  Google Scholar 

  10. Tononi, G.: An information integration theory of consciousness. BMC Neurosci. 5, 42 (2004)

    Article  PubMed  Google Scholar 

  11. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  Google Scholar 

  12. Rubinov, M., Kotter, R., Hagmann, P., Sporns, O.: Brain connectivity toolbox: a collection of complex network measurements and brain connectivity datasets. NeuroImage 47(Suppl 1), 39–41 (2009)

    Google Scholar 

  13. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3), 1059–1069 (2010)

    Article  PubMed  Google Scholar 

  14. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  PubMed  CAS  Google Scholar 

  15. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 76(2), 026107 (2007)

    Article  Google Scholar 

  16. Humphries, M.D., Gurney, K.: Network ‘small-world-ness’: A quantitative method for determining canonical network equivalence. PLoS ONE 3(4), 0002051 (2008). doi:10.1371/journal.pone.0002051

    Article  Google Scholar 

  17. Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)

    Article  PubMed  CAS  Google Scholar 

  18. Shin, C.-W., Kim, S.: Self-organized criticality and scale-free properties in emergent functional neural networks. Phys. Rev. E 74(4), 45101 (2006)

    Article  Google Scholar 

  19. Kato, H., Kimura, T., Ikeguchi, T.: Self-organized neural network structure depending on the STDP learning rules. In: Visarath, X., et al. (eds.) Applications of Nonlinear Dynamics. Model and Design of Complex Systems. Understanding Complex Systems, pp. 413–416. Springer, Berlin (2009)

    Google Scholar 

  20. Kato, H., Ikeguchi, T., Aihara, K.: Structural analysis on STDP neural networks using complex network theory. In: Artificial Neural Networks—ICANN 2009. Lecture Notes in Computer Science, vol. 5768, pp. 306–314. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998)

    PubMed  CAS  Google Scholar 

  22. Song, S., Miller, K.D., Abbott, L.F.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  PubMed  CAS  Google Scholar 

  23. Gleeson, P., Steuber, V., Silver, R.A.: neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54(2), 219–235 (2007)

    Article  PubMed  CAS  Google Scholar 

  24. Gleeson, P., Crook, S., Cannon, R.C., Hines, M.L., Billings, G.O., Farinella, M., Morse, T.M., Davison, A.P., Ray, S., Bhalla, U.S., Barnes, S.R., Dimitrova, Y.D., Silver, R.A.: NeuroML: A language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput. Biol. 6(6), 1000815 (2010). doi:10.1371/journal.pcbi.1000815

    Article  Google Scholar 

  25. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J., Diesmann, M., Morrison, A., Goodman, P., Harris, F., Zirpe, M., Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons: A review of tools and strategies. J. Comput. Neurosci. 23, 349–398 (2007)

    Article  PubMed  Google Scholar 

  26. Billings, G., van Rossum, M.C.W.: Memory retention and spike-timing-dependent plasticity. J. Neurophysiol. 101, 2775–2788 (2009)

    Article  PubMed  Google Scholar 

  27. Carnevale, T., Hines, M.: The NEURON Book. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  28. Tononi, G., Sporns, O.: Measuring information integration. BMC Neurosci. 4, 31–51 (2003)

    Article  PubMed  Google Scholar 

  29. Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: Motivation and theoretical framework. PLoS Comput. Biol. 4(6), 1000091 (2008). doi:10.1371/journal.pcbi.1000091

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by an EPSRC research grant (Ref. EP/C010841/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Basalyga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Basalyga, G., Gleiser, P.M., Wennekers, T. (2011). Emergence of Small-World Structure in Networks of Spiking Neurons Through STDP Plasticity. In: Hernández, C., et al. From Brains to Systems. Advances in Experimental Medicine and Biology, vol 718. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0164-3_4

Download citation

Publish with us

Policies and ethics