Kernel-Optimization-Based Face Recognition



Feature extraction is an important step and essential process in many data analysis areas, such as face recognition, handwriting recognition, human facial expression analysis, speech recognition.


Kernel Matrix Kernel Principal Component Analysis Kernel Learning Kernel Optimization High Recognition Accuracy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Amari S, Wu S (1999) Improving support vector machine classifiers by modifying kernel functions. Neural Netw 12(6):783–789CrossRefGoogle Scholar
  2. 2.
    Sharma A, Paliwal KK, Imoto S, Miyano S (2012) Principal component analysis using QR decomposition. Int J Mach Learn Cybern. doi: 10.1007/s13042-012-0131-7
  3. 3.
    Chen C, Zhang J, He X, Zhou ZH (2012) Non-parametric kernel learning with robust pairwise constraints. Int J Mach Learn Cybern 3(2):83–96CrossRefGoogle Scholar
  4. 4.
    Zhua Q (2010) Reformative nonlinear feature extraction using kernel MSE. Neurocomputing 73(16–18):3334–3337CrossRefGoogle Scholar
  5. 5.
    Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12(10):2385–2404CrossRefGoogle Scholar
  6. 6.
    Liang Z, Shi P (2005) Uncorrelated discriminant vectors using a kernel method. Pattern Recogn 38:307–310CrossRefMATHGoogle Scholar
  7. 7.
    Wang L, Chan KL, Xue P (2005) A criterion for optimizing kernel parameters in KBDA for image retrieval. IEEE Trans Syst, Man and Cybern B: Cybern 35(3):556–562CrossRefGoogle Scholar
  8. 8.
    Chen WS, Yuen PC, Huang J, Dai DQ (2005) Kernel machine-based one-parameter regularized Fisher discriminant method for face recognition. IEEE Trans Syst, Man Cybern B: Cybern 35(4):658–669Google Scholar
  9. 9.
    Lu J, Plataniotis KN, Venetsanopoulos AN (2003) Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans Neural Netw 14(1):117–226CrossRefGoogle Scholar
  10. 10.
    Li JB, Pan JS, Chu SC (2008) Kernel class-wise locality preserving projection. Inf Sci 178(7):1825–1835CrossRefMATHGoogle Scholar
  11. 11.
    Feng G, Hu D, Zhang D, Zhou Z (2006) An alternative formulation of kernel LPP with application to image recognition. Neurocomputing 69(13–15):1733–1738CrossRefGoogle Scholar
  12. 12.
    Cheng J, Liu Q, Lua H, Chen YW (2005) Supervised kernel locality preserving projections for face recognition. Neurocomputing 67:443–449CrossRefGoogle Scholar
  13. 13.
    Huang J, Yuen PC, Chen WS, LaiJH (2004) Kernel subspace LDA with optimized kernel parameters on face recognition. In: Proceedings of the sixth IEEE international conference on automatic face and gesture recognitionGoogle Scholar
  14. 14.
    Zhao H, Sun S, Jing Z, Yang J (2006) Local structure based supervised feature extraction. Pattern Recogn 39(8):1546–1550CrossRefMATHGoogle Scholar
  15. 15.
    Pan JS, Li JB, Lu ZM (2008) Adaptive quasiconformal kernel discriminant analysis. Neurocomputing 71(13–15):2754–2760CrossRefGoogle Scholar
  16. 16.
    Li JB, Pan JS, Chen SM (2011) Kernel self-optimized locality preserving discriminant analysis for feature extraction and recognition. Neurocomputing 74(17):3019–3027CrossRefGoogle Scholar
  17. 17.
    Xiong H, Swamy MN, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460–474CrossRefGoogle Scholar
  18. 18.
    Li JB, Pan JS, Lu ZM (2009) Kernel optimization-based discriminant analysis for face recognition. Neural Comput Appl 18(6):603–612CrossRefGoogle Scholar
  19. 19.
    Wang X, Dong C (2009) Improving generalization of fuzzy if-then rules by maximizing fuzzy entropy. IEEE Trans Fuzzy Syst 17(3):556–567CrossRefGoogle Scholar
  20. 20.
    Wang X, Hong JR (1999) Learning optimization in simplifying fuzzy rules. Fuzzy Sets Syst 106(3):349–356MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Li JB, Yu LJ, Sun SH (2011) Refined kernel principal component analysis based feature extraction. Chin J Electron 20(3):467–470Google Scholar
  22. 22.
    Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Machine Mach Intell 19(7):711–720CrossRefGoogle Scholar
  23. 23.
    Suckling J, Parker J, Dance D, Astley S, Astley I, Hutt I, Boggis C (1994) The mammographic images analysis society digital mammogram database. Exerpta Med 1069:375–378Google Scholar
  24. 24.
    Yang MH (2002) Kernel eigenfaces vs. kernel Fisherfaces: face recognition using kernel methods. In: Proceedings of fifth IEEE international conference on automatic face and gesture recognition, pp 215–220Google Scholar
  25. 25.
    Wang XH, Good WF, Chapman BE, Chang YH, Poller WR, Chang TS, Hardesty LA (2003) Automated assessment of the composition of breast tissue revealed on tissue-thickness-corrected mammography. Am J Roentgenol 180:227–262CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Automatic Test and ControlHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.School of Information and EngineeringFlinders University of South AustraliaBedford ParkAustralia
  3. 3.HIT Shenzhen Graduate SchoolHarbin Institute of TechnologyShenzhenPeople’s Republic of China

Personalised recommendations