Skip to main content

Hyperspectral Classification

  • Chapter
  • First Online:
Environmental Sensing
  • 1435 Accesses

Abstract

The detailed spectra defined in a hyperspectral images posses new image processing challenges and exciting opportunities. Unlike its multispectral counterpart, hyperspectral imagery captures a level of spectral resolution that contains unique compositional and structural information about the landscape not available in other forms of remotely sensed imagery. To exploit this source of information, thematic extraction based on hyperspectral data involves isolating spectral features in the image according to their reflectance properties followed by a comparison of these properties to those on known materials. In this chapter, we will review the methods employed to extract thematic information from hyperspectral imagery and examine the algorithms called upon to process image spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, J. and Gillespie, A. (2006) Remote Sensing of Landscapes with Spectral Images: A Physical Modeling Approach, Cambridge University Press, Cambridge, UK., 362p.

    Google Scholar 

  • Borengasser, M., Hungate, W. and Watking, R. ( 2008) Hyperspectral Remote Sensing: Principles and Applications, CRC Press, Boca Raton, FL., 119p.

    Google Scholar 

  • Clark et al., 2000; Clark, R. N, Swayze, G. A., Livo, K. E., Kokaly, R. F, Sutley S. J., Dalton, J. B., McDougal, R. R., and Gent, C. A., 2003a. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems: Journal of Geophysical Research, 1080 (E12, 5131): 5–1–5-44, doi: 10.1029/2002JE001847

  • Drake, N. Mackin, S. and Settle, J. (1999) Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Imagery Remote Sensing of Environment, 68, 12–25

    Google Scholar 

  • Goodenough, D., Dyk, A., Niemann, O., Pearlman, J., Chen, H., Han, T., Murdoch, M. and West, C. (2003) Processing Hyperion and ALI for Forest Classification, IEEE Transactions on Geoscience and Remote Sensing, 41, 1321–1331.

    Google Scholar 

  • Gupta, R.P. (2003) Remote Sensing Geology. Springer-Verlag New York, 656p.

    Google Scholar 

  • Heiden, U., Segl, K., Roessner, S. and Kaufmann, H. (2007) Determination of Robust Spectral Features for Identification of Urban Surface Materials in Hyperspectral Remote Sensing Data, Remote Sensing of Environment, 111, 537–552.

    Article  Google Scholar 

  • Hunter, E. and Power, C. (2002) An Assessment of two Classification Methods for Mapping Thames Estuary Intertidal Habitats Using CASI Data, International Journal of Remote Sensing, 23, 2989–3008.

    Article  Google Scholar 

  • Kardi, T. (2007) Remote Sensing of Urban Area: Linear Spectral Unmixing of Landsat Thematic Mapper Images Acquired Over Tartu (Estonia) Proceedings of the Estonian Academy of Biology and Ecology, 56, 19–32.

    Google Scholar 

  • Keshava, N. (2003) A Survey of Spectral Unmixing Algorithms, Lincoln Laboratory Journal, 14, 55–78.

    Google Scholar 

  • Keshava, N. and Mustard, J. (2002) Spectral Unmixing, IEEE Signal Processing Magazine, January, 44–57.

    Google Scholar 

  • Kruse, F. A., Boardman, J. W. and Huntington, J. F. (2003). Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6), 1388–1400.

    Article  Google Scholar 

  • Kruse, F., Boardman, J., Lefkoff, A., Heidebrecht, K., Shapiro, A., Barloon, P. and Goetz, A. (1993) The Spectral Image Processing System (SIPS), Remote Sensing of Environmental, 44, 145–13.

    Article  Google Scholar 

  • Mundt, J., Streutker, D. and Glenn, N. (2007) Partial Unmixing of Hyperspectral Imagery, Theory and Methods, Proceedings of the American Society of Photogrammetry and Remote Sensing, Tampa, Florida, 46–57.

    Google Scholar 

  • Mitchell, J. and Glenn, N. (2009) Subpixel Abundance Estimates’ in Mixture-tuned Matched Filtering Classifications of leafy spurge (Euphorbia esula L.) International Journal of Remote Sensing, 30, 6099–6119.

    Article  Google Scholar 

  • Pu, R., Gong, P., Michishita, R. and Sasagawa, T. (2008) Spectral Mixture Analysis for mapping Abundance of Urban Surface Components from the Terra/ASTER Data, Remote Sensing of Environment, 112, 939–954.

    Article  Google Scholar 

  • Rogge, D., Rivard, B., Zhang, J., Sanchez, A., Harris, J. and Feng, J. (2007) Integration of spatial-spectral information for the improved extraction of endmembers Remote Sensing of Environment, 110, 287–303

    Google Scholar 

  • Schwarz, I. and Staenz, K. (2001) Adaptive Threshold for Spectral Matching of Hyperspectral Data, Canadian Journal of Remote Sensing, 27, 216–224.

    Google Scholar 

  • Van Der Meer, F. Vasquez-Torres, M. and Van Dyke, P. (1997) Spectral Characterization of Ophiolite Lithologies in the Troodos Ophiolite Complex of Cyprus and its Potential in Prospecting for Massive Sulphide Deposits, International Journal of Remote Sensing, 18, 1245–1257.

    Article  Google Scholar 

  • Van der Meer, F. (1998/1999) Imaging spectrometry for geological remote sensing - Geologie en Mijnbouw, 77, 137–151

    Google Scholar 

  • Van der Meer, F. (2004) Analysis of spectral absorption features in hyperspectral imagery. JAG: International Journal of Applied Earth Observation and Geoinformation, 5(1), 55–68.

    Google Scholar 

  • Van der Meer, F. (2006) The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery International Journal of Applied Earth Observations and Geoinformation, 8, 3–17

    Google Scholar 

  • Willams, P., Hunt, A. and Raymond, E. (2002) Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering Remote Sensing of Environment, 82, 446–456.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Lein .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lein, J.K. (2012). Hyperspectral Classification. In: Environmental Sensing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0143-8_10

Download citation

Publish with us

Policies and ethics