Skip to main content

The Future of Neovascular Age-Related Macular Degeneration

  • Chapter
  • First Online:
Age-related Macular Degeneration Diagnosis and Treatment

Abstract

The treatment of neovascular age-related macular degeneration (AMD) will continue to evolve dramatically. Researchers are working to find new therapeutics targeting important pathways involved in angiogenesis, including: Vascular endothelial growth factor (VEGF) inhibition Vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor inhibition (PDGFR), including tyrosine kinase inhibitors, RNA interference, and vaccine therapy Radiation therapy utilizing novel local approaches of delivery Antiinflammatory and immunosuppressive pathways, including inhibition of comp­lement, tumor necrosis factor alpha (TNFα), and mammalian target of rapamycin (mTOR) Gene therapy, transferring genes for pigment epithelial-derived growth factor (PEDF) and potent VEGF binders Other pathways, including the nicotinic acetylcholine receptor pathway antagonism, blockade of cell membrane ion transport, disruption of microtubule formation, integrin inhibition, neuroprotection, and inhibition of sphingosine-1-phosphate Combining existing and future therapies that affect distinctly separate pathways in the pathogenesis of neovascular AMD, coupled with enhanced drug delivery technologies, may continue to enhance visual outcomes while reducing treatment burdens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev. 2004;25(4):581–611.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrara N, Damico L, Shams N, et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–70.

    Article  PubMed  Google Scholar 

  3. Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–31.

    Article  PubMed  CAS  Google Scholar 

  4. Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44.

    Article  PubMed  CAS  Google Scholar 

  5. Brown DM, Michels M, Kaiser PK, et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology. 2009;116(1):57–65.e5.

    Article  PubMed  Google Scholar 

  6. Comparison of age-related macular degeneration treatments trials: lucentis-avastin trial [ClinicalTrials.gov identifier: NCT00593450]. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00593450. Accessed 16 Dec 2009.

  7. Rakic JM, Lambert V, Devy L, et al. Placental growth factor, a member of the VEGF family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci. 2003;44(7):3186–93.

    Article  PubMed  Google Scholar 

  8. Nguyen QD, Shah SM, Hafiz G, et al. A phase I trial of an IV-administered vascular endothelial growth factor trap for treatment in patients with choroidal neovascularization due to age-related macular degeneration. Ophthalmology. 2006;113(9):1522.e1–14.

    Article  Google Scholar 

  9. Nguyen QD, Shah SM, Browning DJ, et al. A phase I study of intravitreal vascular endothelial growth factor trap-eye in patients with neovascular age-related macular degeneration. Ophthalmology. 2009;116(11):2141–8.e1.

    Article  PubMed  Google Scholar 

  10. Bayer HealthCare and Regeneron Announce VEGF trap-eye achieved durable improvement in vision over 52 weeks in a phase 2. http://www.medicalnewstoday.com/articles/119267.php. Accessed 4 Dec 2009.

  11. Vascular Endothelial Growth Factor (VEGF) trap-eye: investigation of efficacy and safety in wet age-related macular degeneration (AMD) (VIEW 1). ClinicalTrials.gov identifier: NCT00509795. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00509795. Accessed 4 Dec 2009.

  12. Vascular Endothelial Growth Factor (VEGF) trap-eye: investigation of efficacy and safety in wet age-related macular degeneration (AMD) (VIEW 2). ClinicalTrials.gov identifier: NCT00637377. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00637377. Accessed 4 Dec 2009.

  13. Singerman L. Combination therapy using the small interfering RNA bevasiranib. Retina. 2009;29(6 Suppl):S49–50.

    Article  PubMed  Google Scholar 

  14. Singerman LJ. VEGF small interfering (si) RNA, for treatment of wet age-related macular degeneration (AMD). Presented at American Society of Retina Specialists, Cannes, 2006.

    Google Scholar 

  15. Emerson MV, Lauer AK. Current and emerging therapies for the treatment of age-related macular degeneration. Clin Ophthalmol. 2008;2(2):377–88.

    PubMed  CAS  Google Scholar 

  16. Safety & Efficacy Study Evaluating the Combination of Bevasiranib & Lucentis Therapy in Wet AMD (COBALT). ClinicalTrials.gov identifier: NCT00499590. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00499590. Accessed 5 Dec 2009.

  17. Bevasiranib, an siRNA targeting Vascular Endothelial Growth Factor (VEGF) for the treatment of age-related macular degeneration (AMD), is the most advanced siRNA at OPKO and the first siRNA in the industry to enter a Phase III clinical trial. OPKO’s website. http://www.opko.com/research/?doc=ophthalmics. Accessed 5 Dec 2009.

  18. Safety & Efficacy Study Evaluating the Combination of Bevasiranib & Lucentis Therapy in Wet AMD (CARBON). ClinicalTrials.gov identifier: NCT00557791. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00557791. Accessed 5 Dec 2009.

  19. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669–76.

    Article  PubMed  CAS  Google Scholar 

  20. Zeng H, Dvorak HF, Mukhopadhyay D. Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 2001;276(29):26969–79.

    Article  PubMed  CAS  Google Scholar 

  21. Hellstrom M, Gerhardt H, Kalen M, et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53.

    Article  PubMed  CAS  Google Scholar 

  22. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res. 2010;180:103–14.

    Article  PubMed  CAS  Google Scholar 

  23. Kaiser PK. Antivascular endothelial growth factor agents and their development: therapeutic implications in ocular diseases. Am J Ophthalmol. 2006;142(4):660–8.

    Article  PubMed  CAS  Google Scholar 

  24. Safety and efficacy of oral PTK787 in patients with subfoveal choroidal neovascularization secondary to age-related macular degeneration (AMD) (ADVANCE). ClinicalTrials.gov identifier: NCT00138632. ClinicalTrials.gov online. http://clinicaltrials.gov/ct2/show/NCT00138632. Accessed 20 Nov 2009.

  25. Doukas J, Mahesh S, Umeda N, et al. Topical administration of a multi-targeted kinase inhibitor suppresses choroidal neovascularization and retinal edema. J Cell Physiol. 2008;216(1):29–37.

    Article  PubMed  CAS  Google Scholar 

  26. Roberts D. Antiangiogenic drugs are stopping neovascularization in wet macular degeneration. http://www.mdsupport.org/library/anti-angio.html. Accessed 6 Dec 2009.

  27. A phase 1 safety study of TG100801 eye drops in healthy volunteers. http://www.clinicaltrials.gov/ct2/show/NCT00414999. Accessed 6 Dec 2009.

  28. Open-label, pilot study of TG100801 in patients with choroidal neovascularization due to AMD. ClinicalTrials.gov identifier: NCT00509548. ClinicalTrials.gov online. http://clinicaltrials.gov/ct2/show/NCT00509548. Accessed 20 Nov 2009.

  29. Sonpavde G, Hutson TE. Pazopanib: a novel multitargeted tyrosine kinase inhibitor. Curr Oncol Rep. 2007;9(2):115–9.

    Article  PubMed  CAS  Google Scholar 

  30. A study to evaluate the pharmacodynamics, safety, and pharmacokinetics of pazopanib drops in adult subjects with neovascular AMD. ClinicalTrials.gov identifier: NCT00612456. http://www.clinicaltrials.gov/ct2/show/NCT00612456. Accessed 6 Dec 2009.

  31. An extension to study MD7108240. ClinicalTrials.gov identifier: NCT00733304. http://www.clinicaltrials.gov/ct2/show/NCT00733304. Accessed 6 Dec 2009.

  32. Shen J, Samul R, Silva RL, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006;13(3):225–34.

    Article  PubMed  CAS  Google Scholar 

  33. Sirna therapeutics reports final results from phase 1 study in its RNAi-based therapeutic for age-related macular degeneration. http://www.medicalnewstoday.com/articles/49334.php. Accessed 6 December 2009.

  34. Allergan drops development of siRNA Rx for AMD on poor phase II data. http://www.genomeweb.com/rnai/allergan-drops-development-sirna-rx-amd-poor-phase-ii-data. Accessed 2 Jan 2010.

  35. A study using intravitreal injections of a small interfering RNA in patients with age-related macular degeneration. ClinicalTrials.gov identifier: NCT00395057. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00395057. Accessed 6 Dec 2009.

  36. Wigginton JM, Gruys E, Geiselhart L, et al. IFN-gamma and Fas/FasL are required for the antitumor and antiangiogenic effects of IL-12/pulse IL-2 therapy. J Clin Invest. 2001;108(1):51–62.

    PubMed  CAS  Google Scholar 

  37. Mochimaru H, Nagai N, Hasegawa G, et al. Suppression of choroidal neovascularization by dendritic cell vaccination targeting VEGFR2. Invest Ophthalmol Vis Sci. 2007;48(10):4795–801.

    Article  PubMed  Google Scholar 

  38. Anti-VEGFR vaccine therapy in treating patients with neovascular maculopathy. ClinicalTrials.gov identifier: NCT00791570. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00791570. Accessed 6 Dec 2009.

  39. Ni Z, Hui P. Emerging pharmacologic therapies for wet age-related macular degeneration. Ophthalmologica. 2009;223(6):401–10.

    Article  PubMed  CAS  Google Scholar 

  40. A phase 1, safety, tolerability and pharmacokinetic profile of intravitreous injections of E10030 (Anti-PDGF Pegylated Aptamer) in subjects with neovascular age-related macular degeneration. ClinicalTrials.gov identifier: NCT00569140. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00569140. Accessed 27 Dec 2009.

  41. Kuppermann B. Combined inhibition of platelet-­derived growth factor (PDGF) and VEGF for treatment of neovascular AMD – Results of a phase 1 study. Retina Congress, NYC, NY 2009.

    Google Scholar 

  42. Study of Anti-PDGF and Anti-VEGF therapy shows significant neovascular regression and enhanced visual outcome. http://www.medicalnewstoday.com/articles/148727.php. Accessed 27 Dec 2009.

  43. The Radiation Therapy for Age-related Macular Degeneration (RAD) Study Group. A prospective, randomized, double-masked trial on radiation therapy for neovascular age-related macular degeneration (RAD Study). Ophthalmology. 1999;106(12):2239–47.

    Google Scholar 

  44. Marcus DM, Sheils W, Johnson MH, et al. External beam irradiation of subfoveal choroidal neovascularization complicating age-related macular degeneration: one-year results of a prospective, double-masked, randomized clinical trial. Arch Ophthalmol. 2001;119(2):171–80.

    PubMed  CAS  Google Scholar 

  45. Hart PM, Chakravarthy U, Mackenzie G, et al. Visual outcomes in the subfoveal radiotherapy study: a randomized controlled trial of teletherapy for age-related macular degeneration. Arch Ophthalmol. 2002;120(8):1029–38.

    PubMed  CAS  Google Scholar 

  46. Zambarakji HJ, Lane AM, Ezra E, et al. Proton beam irradiation for neovascular age-related macular degeneration. Ophthalmology. 2006;113(11):2012–9.

    Article  PubMed  Google Scholar 

  47. Krishnan L, Krishnan EC, Jewell WR. Immediate effect of irradiation on microvasculature. Int J Radiat Oncol Biol Phys. 1988;15(1):147–50.

    Article  PubMed  CAS  Google Scholar 

  48. Chakravarthy U, Gardiner TA, Archer DB, Maguire CJ. A light microscopic and autoradiographic study of non-irradiated and irradiated ocular wounds. Curr Eye Res. 1989;8(4):337–48.

    Article  PubMed  CAS  Google Scholar 

  49. Willett CG, Duda DG, di Tomaso E, et al. Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: a multidisciplinary phase II study. J Clin Oncol. 2009;27(18):3020–6.

    Article  PubMed  CAS  Google Scholar 

  50. Willett CG, Kozin SV, Duda DG, et al. Combined vascular endothelial growth factor-targeted therapy and radiotherapy for rectal cancer: theory and clinical practice. Semin Oncol. 2006;33(5 Suppl 10):S35–40.

    Article  PubMed  CAS  Google Scholar 

  51. Avila MP, Farah ME, Santos A, et al. Twelve-month safety and visual acuity results from a feasibility study of intraocular, epiretinal radiation therapy for the treatment of subfoveal CNV secondary to AMD. Retina. 2009;29(2):157–69.

    Article  PubMed  Google Scholar 

  52. Dugel P. Epimacular brachytherapy for the treatment of neovascular AMD: NVI-111 24 Month VA outcomes. Presented at retina congress 2009, New York City, 2009. http://www.neovistainc.com/docs/press/Final-24-Month-Review-of-NVI-111-Study.pdf. Accessed 7 Dec 2009.

  53. Avila MP, Farah ME, Santos A, et al. Twelve-month short-term safety and visual-acuity results from a multicentre prospective study of epiretinal strontium-90 brachytherapy with bevacizumab for the treatment of subfoveal choroidal neovascularisation secondary to age-related macular degeneration. Br J Ophthalmol. 2009;93(3):305–9.

    Article  PubMed  CAS  Google Scholar 

  54. A study of the NeoVista ophthalmic system for the treatment of subfoveal CNV associated with wet AMD in patients that require persistent anti-VEGF therapy (MERITAGE). ClinicalTrials.gov identifier: NCT00809419. ClinicalTrials.gov online. http://clinicaltrials.gov/ct2/show/NCT00809419. Accessed 7 Dec 2009.

  55. A study to evaluate the Neovista ophthalmic system for the treatment of subfoveal CNV in patients with AMD that have failed primary anti-VEGF therapy (ROSE). ClinicalTrials.gov identifier: NCT00679445. ClinicalTrials.gov online. http://clinicaltrials.gov/ct2/show/NCT00679445. Accessed 22 Dec 2009.

  56. Macular EpiRetinal Brachytherapy Versus Lucentis® Only Treatment (MERLOT). ClinicalTrials.gov identifier: NCT01006538. ClinicalTrials.gov online. http://clinicaltrials.gov/ct2/show/NCT01006538. Accessed 22 Dec 2009.

  57. Kaiser P. Externally-applied stereotactic orthovoltage irradiation for age-related macular degeneration: case presentations from a phase I clinical trial. Retina Congress, NYC, NY, 2009.

    Google Scholar 

  58. Safety & efficacy study of the IRay system in patients with choroidal neovascularization (CNV) secondary to age-related macular degeneration (AMD). ClinicalTrials.gov identifier: NCT01016873. ClinicalTrials.gov online. http://clinicaltrials.gov/ct2/show/NCT01016873. Accessed 22 Dec 2009.

  59. Kijlstra A, La Heij E, Hendrikse F. Immunological factors in the pathogenesis and treatment of age-related macular degeneration. Ocul Immunol Inflamm. 2005;13(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  60. Reynolds R, Hartnett ME, Atkinson JP, et al. Plasma complement components and activation fragments: associations with age-related macular degeneration genotypes and phenotypes. Invest Ophthalmol Vis Sci. 2009;50(12):5818–27.

    Article  PubMed  Google Scholar 

  61. Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis. 2002;8:119–26.

    PubMed  CAS  Google Scholar 

  62. Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci USA. 2006;103(7):2328–33.

    Article  PubMed  CAS  Google Scholar 

  63. Oh H, Takagi H, Takagi C, et al. The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 1999;40(9):1891–8.

    PubMed  CAS  Google Scholar 

  64. Potentia pharmaceuticals’ POT-4 drug candidate for age-related macular degeneration successfully completes phase I clinical trial. http://www.medicalnewstoday.com/articles/148725.php. Accessed 24 Dec 2009.

  65. Safety of intravitreal POT-4 therapy for patients with neovascular age-related macular degeneration (AMD) (ASaP). ClinicalTrials.gov identifier: NCT00473928. http://www.clinicaltrials.gov/ct2/show/NCT00473928. Accessed 24 Dec 2009.

  66. ARC1905 (ANTI-C5 APTAMER) given either in combination therapy with Lucentis® 0.5 mg/eye in subjects with neovascular age-related macular degeneration. ClinicalTrials.gov identifier: NCT00709527. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00709527. Accessed 25 Dec 2009.

  67. A Study of ARC1905 (Anti-C5 Aptamer) in subjects with dry age-related macular degeneration. ClinicalTrials.gov identifier: NCT00950638. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00950638. Accessed 25 Dec 2009.

  68. Olson JL, Courtney RJ, Mandava N. Intravitreal infliximab and choroidal neovascularization in an animal model. Arch Ophthalmol. 2007;125(9):1221–4.

    Article  PubMed  CAS  Google Scholar 

  69. Theodossiadis PG, Liarakos VS, Sfikakis PP, et al. Intravitreal administration of the anti-TNF monoclonal antibody infliximab in the rabbit. Graefes Arch Clin Exp Ophthalmol. 2009;247(2):273–81.

    Article  PubMed  CAS  Google Scholar 

  70. Theodossiadis PG, Liarakos VS, Sfikakis PP, et al. Intravitreal administration of the anti-tumor necrosis factor agent infliximab for neovascular age-related macular degeneration. Am J Ophthalmol. 2009;147(5):825–30, 30.e1.

    Article  PubMed  CAS  Google Scholar 

  71. Intravitreal infliximab for diabetic macular edema (DME) and choroidal neovascularization (CNV) (ITVR). ClinicalTrials.gov identifier: NCT00695682. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00695682. Accessed 24 Dec 2009.

  72. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–45.

    Article  PubMed  CAS  Google Scholar 

  73. Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med. 2002;8(2):128–35.

    Article  PubMed  CAS  Google Scholar 

  74. Wang W, Jia WD, Xu GL, et al. Antitumoral activity of rapamycin mediated through inhibition of HIF-1alpha and VEGF in hepatocellular carcinoma. Dig Dis Sci. 2009;54(10):2128–36.

    Article  PubMed  CAS  Google Scholar 

  75. Dejneka NS, Kuroki AM, Fosnot J, et al. Systemic rapamycin inhibits retinal and choroidal neovascularization in mice. Mol Vis. 2004;10:964–72.

    PubMed  CAS  Google Scholar 

  76. Phase 1/2 Study of an ocular sirolimus (Rapamycin) formulation in patients with age-related macular degeneration. ClinicalTrials.gov identifier: NCT00712491. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00712491. Accessed 26 Dec 2009.

  77. MacuSight (TM) announces positive preliminary results from phase 1 study of Sirolimus in wet age-related macular degeneration. http://www.medicalnewstoday.com/articles/98491.php. Accessed 26 Dec 2009.

  78. Phase 2 study of an ocular sirolimus (Rapamycin) formulation in combination with Lucentis® in Patients with age-related macular degeneration (EMERALD). ClinicalTrials.gov identifier: NCT00766337. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00766337. Accessed 26 Dec 2009.

  79. Campochiaro PA. Gene therapy for ocular neovascularization. Curr Gene Ther. 2007;7(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  80. Steele FR, Chader GJ, Johnson LV, Tombran-Tink J. Pigment epithelium-derived factor: neurotrophic activity and identification as a member of the serine protease inhibitor gene family. Proc Natl Acad Sci USA. 1993;90(4):1526–30.

    Article  PubMed  CAS  Google Scholar 

  81. Duh EJ, Yang HS, Suzuma I, et al. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest Ophthalmol Vis Sci. 2002;43(3):821–9.

    PubMed  Google Scholar 

  82. Mori K, Gehlbach P, Ando A, et al. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2002;43(7):2428–34.

    PubMed  Google Scholar 

  83. Gehlbach P, Demetriades AM, Yamamoto S, et al. Periocular injection of an adenoviral vector encoding pigment epithelium-derived factor inhibits choroidal neovascularization. Gene Ther. 2003;10(8):637–46.

    Article  PubMed  CAS  Google Scholar 

  84. Campochiaro PA, Nguyen QD, Shah SM, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006;17(2):167–76.

    Article  PubMed  CAS  Google Scholar 

  85. Study of AdGVPEDF.11D in neovascular age-related macular degeneration (AMD). ClinicalTrials.gov identifier: NCT00109499. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00109499. Accessed 26 Dec 2009.

  86. Rasmussen H, Chu KW, Campochiaro P, et al. Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther. 2001;12(16):2029–32.

    PubMed  CAS  Google Scholar 

  87. Hamilton MM, Brough DE, McVey D, et al. Repeated administration of adenovector in the eye results in efficient gene delivery. Invest Ophthalmol Vis Sci. 2006;47(1):299–305.

    Article  PubMed  Google Scholar 

  88. Pechan P, Rubin H, Lukason M, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009;16(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  89. Safety and tolerability study of AAV2-sFLT01 in patients with neovascular age-related macular degeneration (AMD). ClinicalTrials.gov identifier: NCT01024998. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT01024998. Accessed 26 Dec 2009.

  90. Kiuchi K, Matsuoka M, Wu JC, et al. Mecamylamine suppresses Basal and nicotine-stimulated choroidal neovascularization. Invest Ophthalmol Vis Sci. 2008;49(4):1705–11.

    Article  PubMed  Google Scholar 

  91. Safety and efficacy of ATG003 in patients with wet age-related macular degeneration (AMD). ClinicalTrials.gov identifier: NCT00414206. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00414206. Accessed 26 Dec 2009.

  92. Safety and efficacy of ATG003 in patients with AMD receiving anti-VEGF. ClinicalTrials.gov identifier: NCT00607750. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00607750. Accessed 26 Dec 2009.

  93. Connolly B, Desai A, Garcia CA, et al. Squalamine lactate for exudative age-related macular degeneration. Ophthalmol Clin North Am. 2006;19(3):381–91, vi.

    PubMed  Google Scholar 

  94. Ciulla TA, Criswell MH, Danis RP, et al. Squalamine lactate reduces choroidal neovascularization in a laser-injury model in the rat. Retina. 2003;23(6):808–14.

    Article  PubMed  Google Scholar 

  95. A safety and efficacy study of MSI-1256F (Squalamine Lactate) to treat “wet” age-related macular degeneration. ClinicalTrials.gov identifier: NCT00593450. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00089830. Accessed 26 Dec 2009.

  96. A study of MSI-1256 F (Squalamine Lactate) to treat “wet” age-related macular degeneration. ClinicalTrials.gov identifier: NCT00333476. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00333476. Accessed 26 Dec 2009.

  97. MSI-1256 F (Squalamine Lactate) in combination with verteporfin in patients with “wet” age-related macular degeneration (AMD). ClinicalTrials.gov identifier: NCT00094120. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00094120. Accessed 26 Dec 2009.

  98. A Safety and Efficacy Study of Squalamine Lactate for Injection (MSI-1256F) for “wet” age-related macular degeneration. ClinicalTrials.gov identifier: NCT00139282. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00139282. Accessed 26 Dec 2009.

  99. Tozer GM, Prise VE, Wilson J, et al. Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res. 2001;61(17):6413–22.

    PubMed  CAS  Google Scholar 

  100. Vincent L, Kermani P, Young LM, et al. Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J Clin Invest. 2005;115(11):2992–3006.

    Article  PubMed  CAS  Google Scholar 

  101. Kador PF, Blessing K, Randazzo J, et al. Evaluation of the vascular targeting agent combretastatin a-4 prodrug on retinal neovascularization in the galactose-fed dog. J Ocul Pharmacol Ther. 2007;23(2):132–42.

    Article  PubMed  CAS  Google Scholar 

  102. OXiGENE announces interim results of wet age-related macular degeneration trial of Combretastatin A4 prodrug. http://www.thefreelibrary.com/OXiGENE+Announces+Interim+Results+of+Wet+Age-Related+Macular...-a0116742838. Accessed 9 Jan 2010.

  103. Wong TP BD, Benz MS. Phase II clinical trial of intravenous combretastatin a4 phosphate in patients with subfoveal choroidal neovascular membranes (CNV) in pathologic myopia. Presented at ARVO, Ft. Lauderdale, 2007.

    Google Scholar 

  104. OXiGENE announces positive results from its phase II CA4P clinical trial in myopic macular degeneration (MMD-213). http://www.thefreelibrary.com/OXiGENE+Announces+Positive+Results+from+its+Phase+II+CA4P+Clinical+...-a0159340756. Accessed 9 Jan 2010.

  105. OXiGENE reports positive preclinical ocular penetration data with topical formulation of ZYBRESTAT(TM) for Ophthalmology. http://www.highbeam.com/doc/1G1-172903545.html. Accessed 27 Dec 2009.

  106. Ramakrishnan V, Bhaskar V, Law DA, et al. Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol. 2006;5(4):273–86.

    PubMed  CAS  Google Scholar 

  107. Maier AK, Kociok N, Zahn G, et al. Modulation of hypoxia-induced neovascularization by JSM6427, an integrin alpha5beta1 inhibiting molecule. Curr Eye Res. 2007;32(9):801–12.

    Article  PubMed  CAS  Google Scholar 

  108. Zahn G, Vossmeyer D, Stragies R, et al. Preclinical evaluation of the novel small-molecule integrin alpha5beta1 inhibitor JSM6427 in monkey and rabbit models of choroidal neovascularization. Arch Ophthalmol. 2009;127(10):1329–35.

    Article  PubMed  CAS  Google Scholar 

  109. Li R, Maminishkis A, Zahn G, et al. Integrin alpha5beta1 mediates attachment, migration, and proliferation in human retinal pigment epithelium: relevance for proliferative retinal disease. Invest Ophthalmol Vis Sci. 2009;50(12):5988–96.

    Article  PubMed  Google Scholar 

  110. A phase 1 safety study of single and repeated doses of JSM6427 (intravitreal injection) to treat AMD. ClinicalTrials.gov identifier: NCT00536016. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00536016. Accessed 26 Dec 2009.

  111. A phase 1 ascending and parallel group trial to establish the safety, tolerability and pharmacokinetics profile of volociximab (alpha 5 beta 1 integrin antagonist) in subjects with neovascular age-related macular degeneration. ClinicalTrials.gov identifier: NCT00782093. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00782093. Accessed 27 Dec 2009.

  112. Mones J. combined inhibition of α5β1 integrin and vascular endothelial growth factor for neovascular age-related macular degeneration – phase 1 study. Retina Congress, NYC, NY, 2009.

    Google Scholar 

  113. Tao W, Wen R, Goddard MB, et al. Encapsulated cell-based delivery of CNTF reduces photoreceptor degeneration in animal models of retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2002;43(10):3292–8.

    PubMed  Google Scholar 

  114. Emerich DF, Thanos CG. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther. 2008;10(5):506–15.

    PubMed  CAS  Google Scholar 

  115. Wen R, Song Y, Kjellstrom S, et al. Regulation of rod phototransduction machinery by ciliary neurotrophic factor. J Neurosci. 2006;26(52):13523–30.

    Article  PubMed  CAS  Google Scholar 

  116. A study of an encapsulated cell technology (ECT) implant for patients with atrophic macular degeneration. ClinicalTrials.gov identifier: NCT00447954. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00447954. Accessed 16 Dec 2009.

  117. Jaffe G. CNTF-secreting implant for dry AMD. Retina Today. 2009;4(7):52–3.

    Google Scholar 

  118. Xie B, Shen J, Dong A, et al. Blockade of sphingosine-1-phosphate reduces macrophage influx and retinal and choroidal neovascularization. J Cell Physiol. 2009;218(1):192–8.

    Article  PubMed  CAS  Google Scholar 

  119. Caballero S, Swaney J, Moreno K, et al. Anti-sphingosine-1-phosphate monoclonal antibodies inhibit angiogenesis and sub-retinal fibrosis in a murine model of laser-induced choroidal neovascularization. Exp Eye Res. 2009;88(3):367–77.

    Article  PubMed  CAS  Google Scholar 

  120. Safety study of iSONEP (Sonepcizumab/LT1009) to treat neovascular age-related macular degeneration. ClinicalTrials.gov identifier: NCT00767949. ClinicalTrials.gov online. http://www.clinicaltrials.gov/ct2/show/NCT00767949. Accessed 21 Feb 2010.

  121. Lpath’s ISONEP is well tolerated at all dose levels in a phase 1 trial in wet-AMD patients. http://www.medicalnewstoday.com/articles/166897.php. Accessed 21 Feb 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chirag P. Shah M.D., M.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shah, C.P., Heier, J.S. (2011). The Future of Neovascular Age-Related Macular Degeneration. In: Ho, A., Regillo, C. (eds) Age-related Macular Degeneration Diagnosis and Treatment. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0125-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0125-4_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0124-7

  • Online ISBN: 978-1-4614-0125-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics