Advertisement

The Crossing-Angle Resolution in Graph Drawing

  • Walter Didimo
  • Giuseppe Liotta
Chapter

Abstract

The crossing-angle resolution of a drawing of a graph measures the smallest angle formed by any pair of crossing edges. In this chapter, we survey some of the most recent results and discuss the current research agenda on drawings of graphs with good crossing-angle resolution.

Notes

Acknowledgements

Our work is supported in part by MIUR of Italy under project AlgoDEEP prot. 2008TFBWL4.

References

  1. 1.
    E. Ackerman, On the maximum number of edges in topological graphs with no four pairwise crossing edges. Discr. Comput. Geom. 41(3), 365–375 (2009)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    E. Ackerman, R. Fulek, C.D. Tóth, On the size of graphs that admit polyline drawings with few bends and crossing angles, in Proceedings of GD 2010. LNCS, vol. 6502 (Springer, Berlin, 2010), pp. 1–12Google Scholar
  3. 3.
    E. Ackerman, G. Tardos, On the maximum number of edges in quasi-planar graphs. J. Comb. Theor. Ser. A 114(3), 563–571 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kaufmann, A. Symvonis, On the perspectives opened by right angle crossing drawings, in Proceedings of GD 2009. LNCS, vol. 5849 (Springer, Berlin, 2010), pp. 21–32Google Scholar
  5. 5.
    P. Angelini, L. Cittadini, G. Di Battista, W. Didimo, F. Frati, M. Kaufmann, A. Symvonis, On the perspectives opened by right angle crossing drawings. J. Graph Algorithm. Appl. 15(1), 53–78 (2011) (Special issue on GD 2009)Google Scholar
  6. 6.
    E. Argyriou, M. Bekos, A. Symvonis, Maximizing the total resolution of graphs, in Proceedings of GD 2010. LNCS, vol. 6502 (Springer, Berlin, 2010), pp. 62–67Google Scholar
  7. 7.
    E.N. Argyriou, M.A. Bekos, A. Symvonis, The straight-line RAC drawing problem is NP-hard, in SOFSEM. Lecture Notes in Computer Science, vol. 6543 (Springer, Berlin, 2011), pp. 74–85Google Scholar
  8. 8.
    K. Arikushi, R. Fulek, B. Keszegh, F. Moric, Csaba D. Tóth, Graphs that admit right angle crossing drawings. Comput. Geom. Springer, Berlin, 45(4), 169–177 (2012)Google Scholar
  9. 9.
    C. Berge, Graphs (North Holland, Amsterdam, 1885)Google Scholar
  10. 10.
    O.V. Borodin, A.V. Kostochka, A. Raspaud, E. Sopena, Acyclic colouring of 1-planar graphs. Discr. Appl. Math. 114(1–3), 29–41 (2001)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    G. Brightwell, E.R. Scheinerman, Representations of planar graphs. SIAM J. Discr. Math. 6(2), 214–229 (1993)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    H. de Fraysseix, J. Pach, R. Pollack, How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing (Prentice Hall, Upper Saddle River, NJ, 1999)MATHGoogle Scholar
  14. 14.
    E. Di Giacomo, W. Didimo, P. Eades, S.-H. Hong, G. Liotta, On the crossing resolution of complete geometric graphs. Technical report, DIEI RT-002-11, University of Perugia, Italy (2011). http://www.diei.unipg.it/rt/rt_frames.htm
  15. 15.
    E. Di Giacomo, W. Didimo, P. Eades, S.-H. Hong, G. Liotta, Bounds on the crossing resolution of complete geometric graphs. Discr. Appl. Math., 160(1–2), 132–139 (2012). Available online, doi:10.1016/j.dam.2011.09.016Google Scholar
  16. 16.
    E. Di Giacomo, W. Didimo, P. Eades, G. Liotta, 2-layer right angle crossing drawings, in IWOCA 2011, Springer, Berlin, LNCS, 7056, 156–169 (2011)Google Scholar
  17. 17.
    E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, Area, curve complexity, and crossing resolution of non-planar graph drawings, in Proceedings of GD 2009. LNCS, vol. 5849 (Springer, Berlin, 2010), pp. 15–20Google Scholar
  18. 18.
    E. Di Giacomo, W. Didimo, G. Liotta, H. Meijer, Area, curve complexity, and crossing resolution of non-planar graph drawings. Theor. Comput. Syst. 49(3), 565–575 (2011)MATHCrossRefGoogle Scholar
  19. 19.
    W. Didimo, P. Eades, G. Liotta, Drawing graphs with right angle crossings, in Proceedings of WADS 2009. LNCS, vol. 5664 (Springer, Berlin, 2009), pp. 206–217Google Scholar
  20. 20.
    W. Didimo, P. Eades, G. Liotta, A characterization of complete bipartite rac graphs. Inform. Process. Lett. 110(16), 687–691 (2010)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    W. Didimo, P. Eades, G. Liotta, Drawing graphs with right angle crossings. Theor. Comput. Sci. 412(39), 5156–5166 (2011)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    W. Didimo, G. Liotta, S.A. Romeo, Graph visualization techniques for conceptual web site traffic analysis, in PacificVis, IEEE, 2010, pp. 193–200Google Scholar
  23. 23.
    W. Didimo, G. Liotta, S.A. Romeo, Topology-driven force-directed algorithms, in Proceedings of GD 2010. LNCS, vol. 6502 (Springer, Berlin, 2010), pp. 165–176Google Scholar
  24. 24.
    V. Dujmovic, J. Gudmundsson, P. Morin, T. Wolle, Notes on large angle crossing graphs. CoRR, abs/0908.3545 (2009). http://arxiv.org/abs/0908.3545
  25. 25.
    V. Dujmovic, J. Gudmundsson, P. Morin, T. Wolle, Notes on large angle crossing graphs. Chicago J. Theor. Comput. Sci., Brisbane, Australia, January 18–21 (2011)Google Scholar
  26. 26.
    C.A. Duncan, D. Eppstein, S.G. Kobourov, The geometric thickness of low degree graphs, in Symposium on Computational Geometry, ACM, 2004, pp. 340–346Google Scholar
  27. 27.
    P. Eades, G. Liotta, Right angle crossing graphs and 1-planarity, in proceedings of the 27th European Workshop on Computational Geometry (EuroCG), March 28–30, Morschach, Switzerland, pp. 155–158 (2011)Google Scholar
  28. 28.
    P. Eades, A. Symvonis, S. Whitesides, Three-dimensional orthogonal graph drawing algorithms. Discr. Appl. Math. 103(1–3), 55–87 (2000)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    I. Fabrici, T. Madaras, The structure of 1-planar graphs. Discr. Math. 307(7–8), 854–865 (2007)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    F. Frati, Improved lower bounds on the area requirements of series-parallel graphs, in Proceedings of GD 2010. LNCS, vol. 6502 (Springer, Berlin, 2010), pp. 220–225Google Scholar
  31. 31.
    A. Garg, R. Tamassia, On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    W. Huang, Using eye tracking to investigate graph layout effects, in APVIS 2007, 6th International Asia-Pacific Symposium on Visualization, Sydney, Australia, 5–7 February 2007, IEEE, pp. 97–100 (2007)Google Scholar
  33. 33.
    W. Huang, An eye tracking study into the effects of graph layout. CoRR, abs/0810.4431 (2008). http://arxiv.org/abs/0810.4431
  34. 34.
    W. Huang, P. Eades, S.-H. Hong, C.-C. Lin, Improving force-directed graph drawings by making compromises between aesthetics, in VL/HCC, IEEE, 2010, pp. 176–183Google Scholar
  35. 35.
    W. Huang, S.-H. Hong, P. Eades, Effects of crossing angles, in IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008, Kyoto, Japan, March 5–7, pp. 41–46 (2008)Google Scholar
  36. 36.
    M. Jünger, P. Mutzel (eds.), Graph Drawing Software (Mathematics and Visualization) (Springer-Verlag, Berlin, 2003)Google Scholar
  37. 37.
    M. Kaufmann, D. Wagner (eds.), Drawing Graphs, Methods and Models (the Book Grow Out of a Dagstuhl Seminar, April 1999). Lecture Notes in Computer Science, vol. 2025 (Springer-Verlag, Berlin, 2001)Google Scholar
  38. 38.
    V.P. Korzhik, B. Mohar, Minimal obstructions, Springer, Berlin, Lecture Notes in Computer Science, 5417, 302–312 (2008)CrossRefGoogle Scholar
  39. 39.
    Q. Nguyen, P. Eades, S.-H. Hong, W. Huang, Large crossing angles in circular layouts, in Proceedings of GD 2010. LNCS, vol. 6502 (Springer, Berlin, 2010), pp. 397–399Google Scholar
  40. 40.
    J.E. Goodman, J. O’Rourke (eds.), Geometric graph theory, in Handbook of Discrete and Computational Geometry (CRC, 2004), Chapman and Hall/CRC, New York, United States of America, pp. 219–238Google Scholar
  41. 41.
    J. Pach, R. Radoičić, G. Tardos, G. Tóth, Improving the crossing lemma by finding more crossings in sparse graphs. Discr. Comput. Geom. 36(4), 527–552 (2006)MATHCrossRefGoogle Scholar
  42. 42.
    J. Pach, G. Tóth, Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    J. Petersen, Die theorie der regulären graphen. Acta Math. 15, 193–220 (1891)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    H.C. Purchase, Effective information visualisation: a study of graph drawing aesthetics and algorithms. Interact. Comput. 13(2), 147–162 (2000)CrossRefGoogle Scholar
  45. 45.
    H.C. Purchase, D.A. Carrington, J.-A. Allder, Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    K. Sugiyama, Graph Drawing and Applications for Software and Knowledge Engineers (World Scientific, Singapore, 2002)MATHCrossRefGoogle Scholar
  47. 47.
    Y. Suzuki, Optimal 1-planar graphs which triangulate other surfaces. Discr. Math. 310(1), 6–11 (2010)MATHCrossRefGoogle Scholar
  48. 48.
    J.J. Thomas, K.A. Cook, Illuminating the Path: The Research and Development Agenda for Visual Analytics (National Visualization and Analytics Ctr, 2005), Pacific Northwest National Laboratory, United States of AmericaGoogle Scholar
  49. 49.
    M. van Kreveld, The quality ratio of RAC drawings and planar drawings of planar graphs, in Proceedings of GD 2010. LNCS, vol. 6502 (Springer, Berlin, 2010), pp. 371–376Google Scholar
  50. 50.
    C. Ware, H.C. Purchase, L. Colpoys, M. McGill, Cognitive measurements of graph aesthetics. Inform. Vis. 1(2), 103–110 (2002)CrossRefGoogle Scholar
  51. 51.
    D.R. Wood, Grid drawings of k-colourable graphs. Comput. Geom. 30(1), 25–28 (2005)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Elettronica e dell’InformazioneUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations