Skip to main content

Innate-Adaptive Crosstalk: How Dendritic Cells Shape Immune Responses in the CNS

  • Chapter
  • First Online:
Book cover Current Topics in Innate Immunity II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 946))

Abstract

Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afzali, B., Mitchell, P., Lechler, R. I., John, S. and Lombardi, G. (2010) Translational mini-review series on Th17 cells: induction of interleukin-17 production by regulatory T cells. Clin. Exp. Immunol. 159, 120-130.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal, S., Anderson, P., Durbeej, M., van Rooijen, N., Ivars, F., Opdenakker, G. and Sorokin, L. M. (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203, 1007-1019.

    Article  PubMed  CAS  Google Scholar 

  • Alt, C., Laschinger, M. and Engelhardt, B. (2002) Functional expression of the lymphoid chemokines CCL19 (ELC) and CCL 21 (SLC) at the blood-brain barrier suggests their involvement in G-protein-dependent lymphocyte recruitment into the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 32, 2133-2144.

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini, E., Remoli, M. E., Giacomini, E., Rosicarelli, B., Serafini, B., Lande, R., Aloisi, F. and Coccia, E. M. (2005) Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 64, 706-715.

    Article  PubMed  CAS  Google Scholar 

  • Bailey-Bucktrout, S. L., Caulkins, S. C., Goings, G., Fischer, J. A., Dzionek, A. and Miller, S. D. (2008) Cutting edge: central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol. 180, 6457-6461.

    PubMed  CAS  Google Scholar 

  • Bailey, S. L., Schreiner, B., McMahon, E. J. and Miller, S. D. (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol. 8, 172-180.

    Article  PubMed  CAS  Google Scholar 

  • Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity. Nature 392, 245-252.

    Article  PubMed  CAS  Google Scholar 

  • Boven, L. A., Montagne, L., Nottet, H. S. and De Groot, C. J. (2000) Macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions. Clin. Exp. Immunol. 122, 257-263.

    Article  PubMed  CAS  Google Scholar 

  • Brehin, A. C., Mouries, J., Frenkiel, M. P., Dadaglio, G., Despres, P., Lafon, M. and Couderc, T. (2008) Dynamics of immune cell recruitment during West Nile encephalitis and identification of a new CD19+B220-BST-2+ leukocyte population. J. Immunol. 180, 6760-6767.

    PubMed  CAS  Google Scholar 

  • Bulloch, K., Miller, M. M., Gal-Toth, J., Milner, T. A., Gottfried-Blackmore, A., Waters, E. M., Kaunzner, U. W., Liu, K., Lindquist, R., Nussenzweig, M. C., Steinman, R. M. and McEwen, B. S. (2008) CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Comp. Neurol. 508, 687-710.

    Article  PubMed  Google Scholar 

  • Caux, C., Vanbervliet, B., Massacrier, C., Ait-Yahia, S., Vaure, C., Chemin, K., Dieu, N., Mc and Vicari, A. (2002) Regulation of dendritic cell recruitment by chemokines. Transplantation 73, S7-11.

    Article  PubMed  CAS  Google Scholar 

  • Cella, M., Jarrossay, D., Facchetti, F., Alebardi, O., Nakajima, H., Lanzavecchia, A. and Colonna, M. (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919-923.

    Article  PubMed  CAS  Google Scholar 

  • Charles, J., Di Domizio, J., Salameire, D., Bendriss-Vermare, N., Aspord, C., Muhammad, R., Lefebvre, C., Plumas, J., Leccia, M. T. and Chaperot, L. (2010) Characterization of circulating dendritic cells in melanoma: role of CCR6 in plasmacytoid dendritic cell recruitment to the tumor. J. Invest. Dermatol. 130, 1646-1656.

    Article  PubMed  CAS  Google Scholar 

  • Chinnery, H. R., Ruitenberg, M. J. and McMenamin, P. G. (2010) Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice. J. Neuropathol. Exp. Neurol. 69, 896-909.

    Article  PubMed  Google Scholar 

  • Corcoran, L., Ferrero, I., Vremec, D., Lucas, K., Waithman, J., O’Keeffe, M., Wu, L., Wilson, A. and Shortman, K. (2003) The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells. J. Immunol. 170, 4926-4932.

    PubMed  CAS  Google Scholar 

  • Cravens, P. D. and Lipsky, P. E. (2002) Dendritic cells, chemokine receptors and autoimmune inflammatory diseases. Immunol. Cell Biol. 80, 497-505.

    Article  PubMed  CAS  Google Scholar 

  • Cserr, H. F., Harling-Berg, C. J. and Knopf, P. M. (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 2, 269-276.

    Article  PubMed  CAS  Google Scholar 

  • Cudrici, C., Ito, T., Zafranskaia, E., Niculescu, F., Mullen, K. M., Vlaicu, S., Judge, S. I., Calabresi, P. A. and Rus, H. (2007) Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Exp. Mol. Pathol. 83, 198-206.

    Article  PubMed  CAS  Google Scholar 

  • Curtin, J. F., King, G. D., Barcia, C., Liu, C., Hubert, F. X., Guillonneau, C., Josien, R., Anegon, I., Lowenstein, P. R. and Castro, M. G. (2006) Fms-like tyrosine kinase 3 ligand recruits plasmacytoid dendritic cells to the brain. J. Immunol. 176, 3566-3577.

    PubMed  CAS  Google Scholar 

  • Day, T. A., Koch, M., Nouailles, G., Jacobsen, M., Kosmiadi, G. A., Miekley, D., Kuhlmann, S., Jorg, S., Gamradt, P., Mollenkopf, H. J., Hurwitz, R., Reece, S. T., Kaufmann, S. H. and Kursar, M. (2010) Secondary lymphoid organs are dispensable for the development of T-cell-mediated immunity during tuberculosis. Eur. J. Immunol. 40, 1663-1673.

    Article  PubMed  CAS  Google Scholar 

  • de Vos, A. F., van Meurs, M., Brok, H. P., Boven, L. A., Hintzen, R. Q., van der Valk, P., Ravid, R., Rensing, S., Boon, L., t Hart, B. A. and Laman, J. D. (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J. Immunol. 169, 5415-5423.

    PubMed  CAS  Google Scholar 

  • del Pilar Martin, M., Cravens, P. D., Winger, R., Frohman, E. M., Racke, M. K., Eagar, T. N., Zamvil, S. S., Weber, M. S., Hemmer, B., Karandikar, N. J., Kleinschmidt-DeMasters, B. K. and Stuve, O. (2008) Decrease in the numbers of dendritic cells and CD4+ T cells in cerebral perivascular spaces due to natalizumab. Arch. Neurol. 65, 1596-1603.

    Article  PubMed  Google Scholar 

  • Dogan, R. N., Elhofy, A. and Karpus, W. J. (2008) Production of CCL2 by central nervous system cells regulates development of murine experimental autoimmune encephalomyelitis through the recruitment of TNF- and iNOS-expressing macrophages and myeloid dendritic cells. J. Immunol. 180, 7376-7384.

    PubMed  CAS  Google Scholar 

  • Engel, D., Dobrindt, U., Tittel, A., Peters, P., Maurer, J., Gutgemann, I., Kaissling, B., Kuziel, W., Jung, S. and Kurts, C. (2006) Tumor necrosis factor alpha- and inducible nitric oxide synthase-producing dendritic cells are rapidly recruited to the bladder in urinary tract infection but are dispensable for bacterial clearance. Infect. Immun. 74, 6100-6107.

    Article  PubMed  CAS  Google Scholar 

  • Fife, B. T., Huffnagle, G. B., Kuziel, W. A. and Karpus, W. J. (2000) CC chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 192, 899-905.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, H. G., Bonifas, U. and Reichmann, G. (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J. Immunol. 164, 4826-4834.

    PubMed  CAS  Google Scholar 

  • Furtado, G. C., Pina, B., Tacke, F., Gaupp, S., van Rooijen, N., Moran, T. M., Randolph, G. J., Ransohoff, R. M., Chensue, S. W., Raine, C. S. and Lira, S. A. (2006) A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. J. Immunol. 177, 6871-6879.

    PubMed  CAS  Google Scholar 

  • Furukawa, M., Shimoda, H., Kajiwara, T., Kato, S. and Yanagisawa, S. (2008) Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res 29, 289-296.

    Article  PubMed  CAS  Google Scholar 

  • Geissmann, F., Jung, S. and Littman, D. R. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71-82.

    Article  PubMed  CAS  Google Scholar 

  • Gelderblom, M., Leypoldt, F., Steinbach, K., Behrens, D., Choe, C. U., Siler, D. A., Arumugam, T. V., Orthey, E., Gerloff, C., Tolosa, E. and Magnus, T. (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849-1857.

    Article  PubMed  Google Scholar 

  • Gobel, K., Pankratz, S., Schneider-Hohendorf, T., Bittner, S., Schuhmann, M. K., Langer, H. F., Stoll, G., Wiendl, H., Kleinschnitz, C. and Meuth, S. G. (2011) Blockade of the kinin receptor B1 protects from autoimmune CNS disease by reducing leukocyte trafficking. J. Autoimmun.

    Google Scholar 

  • Greter, M., Heppner, F. L., Lemos, M. P., Odermatt, B. M., Goebels, N., Laufer, T., Noelle, R. J. and Becher, B. (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328-334.

    Article  PubMed  CAS  Google Scholar 

  • Hatterer, E., Touret, M., Belin, M. F., Honnorat, J. and Nataf, S. (2008) Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS ONE 3, e3321.

    Article  PubMed  CAS  Google Scholar 

  • Hesske, L., Vincenzetti, C., Heikenwalder, M., Prinz, M., Reith, W., Fontana, A. and Suter, T. (2010) Induction of inhibitory central nervous system-derived and stimulatory blood-derived dendritic cells suggests a dual role for granulocyte-macrophage colony-stimulating factor in central nervous system inflammation. Brain 133, 1637-1654.

    Article  PubMed  Google Scholar 

  • Hintzen, G., Ohl, L., del Rio, M. L., Rodriguez-Barbosa, J. I., Pabst, O., Kocks, J. R., Krege, J., Hardtke, S. and Forster, R. (2006) Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol. 177, 7346-7354.

    PubMed  CAS  Google Scholar 

  • Hu, Y. and Ivashkiv, L. B. (2006) Costimulation of chemokine receptor signaling by matrix metalloproteinase-9 mediates enhanced migration of IFN-alpha dendritic cells. J. Immunol. 176, 6022-6033.

    PubMed  CAS  Google Scholar 

  • Ifergan, I., Kebir, H., Bernard, M., Wosik, K., Dodelet-Devillers, A., Cayrol, R., Arbour, N. and Prat, A. (2008) The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785-799.

    Article  PubMed  Google Scholar 

  • Irla, M., Kupfer, N., Suter, T., Lissilaa, R., Benkhoucha, M., Skupsky, J., Lalive, P. H., Fontana, A., Reith, W. and Hugues, S. (2010) MHC class II-restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell-mediated autoimmunity. J. Exp. Med. 207, 1891-1905.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., Amakawa, R., Inaba, M., Hori, T., Ota, M., Nakamura, K., Takebayashi, M., Miyaji, M., Yoshimura, T., Inaba, K. and Fukuhara, S. (2004) Plasmacytoid dendritic cells regulate Th cell responses through OX40 ligand and type I IFNs. J. Immunol. 172, 4253-4259.

    PubMed  CAS  Google Scholar 

  • Ito, T., Amakawa, R., Kaisho, T., Hemmi, H., Tajima, K., Uehira, K., Ozaki, Y., Tomizawa, H., Akira, S. and Fukuhara, S. (2002) Interferon-alpha and interleukin-12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. J. Exp. Med. 195, 1507-1512.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., Yang, M., Wang, Y. H., Lande, R., Gregorio, J., Perng, O. A., Qin, X. F., Liu, Y. J. and Gilliet, M. (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105-115.

    Article  PubMed  CAS  Google Scholar 

  • Izikson, L., Klein, R. S., Charo, I. F., Weiner, H. L. and Luster, A. D. (2000) Resistance to experimental autoimmune encephalomyelitis in mice lacking the CC chemokine receptor (CCR)2. J. Exp. Med. 192, 1075-1080.

    Article  PubMed  CAS  Google Scholar 

  • Jain, P., Coisne, C., Enzmann, G., Rottapel, R. and Engelhardt, B. (2010) Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis. J. Immunol. 184, 7196-7206.

    Article  PubMed  CAS  Google Scholar 

  • Karman, J., Chu, H. H., Co, D. O., Seroogy, C. M., Sandor, M. and Fabry, Z. (2006) Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J. Immunol. 177, 7750-7760.

    PubMed  CAS  Google Scholar 

  • Karman, J., Ling, C., Sandor, M. and Fabry, Z. (2004) Dendritic cells in the initiation of immune responses against central nervous system-derived antigens. Immunol. Lett. 92, 107-115.

    Article  PubMed  CAS  Google Scholar 

  • King, I. L., Dickendesher, T. L. and Segal, B. M. (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113, 3190-3197.

    Article  PubMed  CAS  Google Scholar 

  • Kivisakk, P., Mahad, D. J., Callahan, M. K., Sikora, K., Trebst, C., Tucky, B., Wujek, J., Ravid, R., Staugaitis, S. M., Lassmann, H. and Ransohoff, R. M. (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627-638.

    Article  PubMed  CAS  Google Scholar 

  • Kohrgruber, N., Groger, M., Meraner, P., Kriehuber, E., Petzelbauer, P., Brandt, S., Stingl, G., Rot, A. and Maurer, D. (2004) Plasmacytoid dendritic cell recruitment by immobilized CXCR3 ligands. J. Immunol. 173, 6592-6602.

    PubMed  CAS  Google Scholar 

  • Kostulas, N., Li, H. L., Xiao, B. G., Huang, Y. M., Kostulas, V. and Link, H. (2002) Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 33, 1129-1134.

    Article  PubMed  Google Scholar 

  • Krumbholz, M., Theil, D., Steinmeyer, F., Cepok, S., Hemmer, B., Hofbauer, M., Farina, C., Derfuss, T., Junker, A., Arzberger, T., Sinicina, I., Hartle, C., Newcombe, J., Hohlfeld, R. and Meinl, E. (2007) CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J. Neuroimmunol. 190, 72-79.

    Article  PubMed  CAS  Google Scholar 

  • Kusunoki, T., Sugai, M., Katakai, T., Omatsu, Y., Iyoda, T., Inaba, K., Nakahata, T., Shimizu, A. and Yokota, Y. (2003) TH2 dominance and defective development of a CD8+ dendritic cell subset in Id2-deficient mice. J. Allergy Clin. Immunol. 111, 136-142.

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht, P., Wieczorek, S., Epplen, J. T., Ambrosch, P. and Kallenberg, C. G. (2009) Granuloma formation in ANCA-associated vasculitides. APMIS. Suppl. 32-36.

    Google Scholar 

  • Lande, R., Gafa, V., Serafini, B., Giacomini, E., Visconti, A., Remoli, M. E., Severa, M., Parmentier, M., Ristori, G., Salvetti, M., Aloisi, F. and Coccia, E. M. (2008) Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J. Neuropathol. Exp. Neurol. 67, 388-401.

    PubMed  CAS  Google Scholar 

  • Lanzavecchia, A. (1999) Dendritic cell maturation and generation of immune responses. Haematologica 84 Suppl EHA-4, 23-25.

    PubMed  Google Scholar 

  • Lee, J., Ling, C., Kosmalski, M. M., Hulseberg, P., Schreiber, H. A., Sandor, M. and Fabry, Z. (2009a) Intracerebral Mycobacterium bovis bacilli Calmette-Guerin infection-induced immune responses in the CNS. J. Neuroimmunol. 213, 112-122.

    Article  CAS  Google Scholar 

  • Lee, Y. K., Mukasa, R., Hatton, R. D. and Weaver, C. T. (2009b) Developmental plasticity of Th17 and Treg cells. Curr. Opin. Immunol. 21, 274-280.

    Article  CAS  Google Scholar 

  • Lee, J., Reinke, E. K., Zozulya, A. L., Sandor, M. and Fabry, Z. (2008) Mycobacterium bovis bacille Calmette-Guerin infection in the CNS suppresses experimental autoimmune encephalomyelitis and Th17 responses in an IFN-gamma-independent manner. J. Immunol. 181, 6201-6212.

    PubMed  CAS  Google Scholar 

  • Lewkowich, I. P., Lajoie, S., Clark, J. R., Herman, N. S., Sproles, A. A. and Wills-Karp, M. (2008) Allergen uptake, activation, and IL-23 production by pulmonary myeloid DCs drives airway hyperresponsiveness in asthma-susceptible mice. PLoS ONE 3, e3879.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Powell, N., Zhang, H., Belevych, N., Ching, S., Chen, Q., Sheridan, J., Whitacre, C. and Quan, N. (2011) Endothelial IL-1R1 is a critical mediator of EAE pathogenesis. Brain, Behavior, and Immunity 25, 160-167.

    Article  PubMed  CAS  Google Scholar 

  • Ling, C., Sandor, M. and Fabry, Z. (2003) In situ processing and distribution of intracerebrally injected OVA in the CNS. J. Neuroimmunol. 141, 90-98.

    Article  PubMed  CAS  Google Scholar 

  • Liu, K. and Nussenzweig, M. C. (2010) Origin and development of dendritic cells. Immunol. Rev. 234, 45-54.

    Article  PubMed  CAS  Google Scholar 

  • Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., Riethmacher, D., Si-Tahar, M., Di Santo, J. P. and Eberl, G. (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J. Exp. Med. 205, 1381-1393.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, C., Comabella, M., Al-zayat, H., Tintore, M. and Montalban, X. (2006) Altered maturation of circulating dendritic cells in primary progressive MS patients. J. Neuroimmunol. 175, 183-191.

    Article  PubMed  CAS  Google Scholar 

  • Lowes, M. A., Chamian, F., Abello, M. V., Fuentes-Duculan, J., Lin, S. L., Nussbaum, R., Novitskaya, I., Carbonaro, H., Cardinale, I., Kikuchi, T., Gilleaudeau, P., Sullivan-Whalen, M., Wittkowski, K. M., Papp, K., Garovoy, M., Dummer, W., Steinman, R. M. and Krueger, J. G. (2005) Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc. Natl. Acad. Sci. U. S. A. 102, 19057-19062.

    Article  PubMed  CAS  Google Scholar 

  • Maglione, P. J., Xu, J. and Chan, J. (2007) B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J. Immunol. 178, 7222-7234.

    PubMed  CAS  Google Scholar 

  • Magliozzi, R., Columba-Cabezas, S., Serafini, B. and Aloisi, F. (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11-23.

    Article  PubMed  CAS  Google Scholar 

  • Magliozzi, R., Howell, O., Vora, A., Serafini, B., Nicholas, R., Puopolo, M., Reynolds, R. and Aloisi, F. (2007) Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089-1104.

    Article  PubMed  Google Scholar 

  • Matyszak, M. K. and Perry, V. H. (1996) The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74, 599-608.

    Article  PubMed  CAS  Google Scholar 

  • McMenamin, P. G. (1999) Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp. Neurol. 405, 553-562.

    Article  PubMed  CAS  Google Scholar 

  • McMenamin, P. G., Wealthall, R. J., Deverall, M., Cooper, S. J. and Griffin, B. (2003) Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell Tissue Res. 313, 259-269.

    Article  PubMed  Google Scholar 

  • Miller, S. D., McMahon, E. J., Schreiner, B. and Bailey, S. L. (2007) Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann. N. Y. Acad. Sci. 1103, 179-191.

    Article  PubMed  CAS  Google Scholar 

  • Milling, S., Yrlid, U., Cerovic, V. and MacPherson, G. (2010) Subsets of migrating intestinal dendritic cells. Immunol. Rev. 234, 259-267.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, K., Yang, H. Y., Berk, J. D., Tran, J. H. and Iadarola, M. J. (2009) Monocyte chemoattractant protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation. Neuroscience 158, 885-895.

    Article  PubMed  CAS  Google Scholar 

  • Naik, S. H., Sathe, P., Park, H. Y., Metcalf, D., Proietto, A. I., Dakic, A., Carotta, S., O’Keeffe, M., Bahlo, M., Papenfuss, A., Kwak, J. Y., Wu, L. and Shortman, K. (2007) Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217-1226.

    Article  PubMed  CAS  Google Scholar 

  • Nataf, S., Strazielle, N., Hatterer, E., Mouchiroud, G., Belin, M. F. and Ghersi-Egea, J. F. (2006) Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 54, 160-171.

    Article  PubMed  Google Scholar 

  • Pachter, J. S., de Vries, H. E. and Fabry, Z. (2003) The blood-brain barrier and its role in immune privilege in the central nervous system. J. Neuropathol. Exp. Neurol. 62, 593-604.

    PubMed  CAS  Google Scholar 

  • Pashenkov, M., Huang, Y. M., Kostulas, V., Haglund, M., Soderstrom, M. and Link, H. (2001) Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124, 480-492.

    Article  PubMed  CAS  Google Scholar 

  • Pashenkov, M., Soderstrom, M., Huang, Y. M. and Link, H. (2002) Cerebrospinal fluid affects phenotype and functions of myeloid dendritic cells. Clin. Exp. Immunol. 128, 379-387.

    Article  PubMed  CAS  Google Scholar 

  • Pashenkov, M., Soderstrom, M. and Link, H. (2003) Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J. Neuroimmunol. 135, 154-160.

    Article  PubMed  CAS  Google Scholar 

  • Plumb, J., Armstrong, M. A., Duddy, M., Mirakhur, M. and McQuaid, S. (2003) CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult. Scler. 9, 142-147.

    Article  PubMed  CAS  Google Scholar 

  • Prodinger, C., Bunse, J., Kruger, M., Schiefenhovel, F., Brandt, C., Laman, J. D., Greter, M., Immig, K., Heppner, F., Becher, B. and Bechmann, I. (2010) CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol.

    Google Scholar 

  • Randolph, G. J., Angeli, V. and Swartz, M. A. (2005a) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617-628.

    Article  CAS  Google Scholar 

  • Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M. and Muller, W. A. (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480-483.

    Article  PubMed  CAS  Google Scholar 

  • Randolph, G. J., Sanchez-Schmitz, G. and Angeli, V. (2005b) Factors and signals that govern the migration of dendritic cells via lymphatics: recent advances. Springer Semin. Immunopathol. 26, 273-287.

    Article  Google Scholar 

  • Randolph, G. J., Sanchez-Schmitz, G., Liebman, R. M. and Schakel, K. (2002) The CD16(+) (FcgammaRIII(+)) subset of human monocytes preferentially becomes migratory dendritic cells in a model tissue setting. J. Exp. Med. 196, 517-527.

    Article  PubMed  CAS  Google Scholar 

  • Reboldi, A., Coisne, C., Baumjohann, D., Benvenuto, F., Bottinelli, D., Lira, S., Uccelli, A., Lanzavecchia, A., Engelhardt, B. and Sallusto, F. (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514-523.

    Article  PubMed  CAS  Google Scholar 

  • Reichmann, G., Schroeter, M., Jander, S. and Fischer, H. G. (2002) Dendritic cells and dendritic-like microglia in focal cortical ischemia of the mouse brain. J. Neuroimmunol. 129, 125-132.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, S. C., Scott, K. A. and Balkwill, F. R. (2002) Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. Eur. J. Immunol. 32, 404-412.

    Article  PubMed  CAS  Google Scholar 

  • Romagnani, S. (2006) Regulation of the T cell response. Clin. Exp. Allergy 36, 1357-1366.

    Article  PubMed  CAS  Google Scholar 

  • Romani, N., Reider, D., Heuer, M., Ebner, S., Kampgen, E., Eibl, B., Niederwieser, D. and Schuler, G. (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods 196, 137-151.

    Article  PubMed  CAS  Google Scholar 

  • Rosicarelli, B., Serafini, B., Sbriccoli, M., Lu, M., Cardone, F., Pocchiari, M. and Aloisi, F. (2005) Migration of dendritic cells into the brain in a mouse model of prion disease. J. Neuroimmunol. 165, 114-120.

    Article  PubMed  CAS  Google Scholar 

  • Savarin, C., Stohlman, S. A., Atkinson, R., Ransohoff, R. M. and Bergmann, C. C. (2010) Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis. J. Virol. 84, 4878-4888.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber, H. A., Hulseberg, P. D., Lee, J., Prechl, J., Barta, P., Szlavik, N., Harding, J. S., Fabry, Z. and Sandor, M. (2010) Dendritic cells in chronic mycobacterial granulomas restrict local anti-bacterial T cell response in a murine model. PLoS ONE 5, e11453.

    Article  PubMed  CAS  Google Scholar 

  • Serafini, B., Columba-Cabezas, S., Di Rosa, F. and Aloisi, F. (2000) Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol. 157, 1991-2002.

    Article  PubMed  CAS  Google Scholar 

  • Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. and Aloisi, F. (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164-174.

    Article  PubMed  Google Scholar 

  • Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E., Capello, E., Mancardi, G. L. and Aloisi, F. (2006) Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J. Neuropathol. Exp. Neurol. 65, 124-141.

    Article  PubMed  CAS  Google Scholar 

  • Serbina, N. V. and Pamer, E. G. (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7, 311-317.

    Article  PubMed  CAS  Google Scholar 

  • Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. and Pamer, E. G. (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59-70.

    Article  PubMed  CAS  Google Scholar 

  • Serot, J. M., Foliguet, B., Bene, M. C. and Faure, G. C. (1997) Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 8, 1995-1998.

    Article  PubMed  CAS  Google Scholar 

  • Serot, J. M., Foliguet, B., Bene, M. C. and Faure, G. C. (1998) Intraepithelial and stromal dendritic cells in human choroid plexus. Hum. Pathol. 29, 1174-1175.

    Article  PubMed  CAS  Google Scholar 

  • Shaftel, S. S., Carlson, T. J., Olschowka, J. A., Kyrkanides, S., Matousek, S. B. and O’Banion, M. K. (2007) Chronic interleukin-1beta expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood brain barrier permeability without overt neurodegeneration. J. Neurosci. 27, 9301-9309.

    Article  PubMed  CAS  Google Scholar 

  • Shortman, K. and Heath, W. R. (2010) The CD8+ dendritic cell subset. Immunol. Rev. 234, 18-31.

    Article  PubMed  CAS  Google Scholar 

  • Shortman, K. and Naik, S. H. (2007) Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19-30.

    Article  PubMed  CAS  Google Scholar 

  • Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S. and Liu, Y. J. (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835-1837.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, J. E., Newcombe, J., Cuzner, M. L. and Woodroofe, M. N. (2000) Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathol. Appl. Neurobiol. 26, 133-142.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, T. L., Roed, H. and Sellebjerg, F. (2004) Optic neuritis: chemokine receptor CXCR3 and its ligands. Br. J. Ophthalmol. 88, 1146-1148.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, T. L., Sellebjerg, F., Jensen, C. V., Strieter, R. M. and Ransohoff, R. M. (2001) Chemokines CXCL10 and CCL2: differential involvement in intrathecal inflammation in multiple sclerosis. Eur. J. Neurol. 8, 665-672.

    Article  PubMed  CAS  Google Scholar 

  • Stasiolek, M., Bayas, A., Kruse, N., Wieczarkowiecz, A., Toyka, K. V., Gold, R. and Selmaj, K. (2006) Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129, 1293-1305.

    Article  PubMed  Google Scholar 

  • Steel, C. D., Hahto, S. M. and Ciavarra, R. P. (2009) Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system. Virology 387, 117-126.

    Article  PubMed  CAS  Google Scholar 

  • Steinman, R. M., Adams, J. C. and Cohn, Z. A. (1975) Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J. Exp. Med. 141, 804-820.

    CAS  Google Scholar 

  • Steinman, R. M. and Idoyaga, J. (2010) Features of the dendritic cell lineage. Immunol. Rev. 234, 5-17.

    Article  PubMed  CAS  Google Scholar 

  • Steinman, R. M., Pack, M. and Inaba, K. (1997) Dendritic cell development and maturation. Adv. Exp. Med. Biol. 417, 1-6.

    PubMed  CAS  Google Scholar 

  • Suter, T., Malipiero, U., Otten, L., Ludewig, B., Muelethaler-Mottet, A., Mach, B., Reith, W. and Fontana, A. (2000) Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. Eur. J. Immunol. 30, 794-802.

    Article  PubMed  CAS  Google Scholar 

  • Szmydynger-Chodobska, J., Strazielle, N., Zink, B. J., Ghersi-Egea, J. F. and Chodobski, A. (2009) The role of the choroid plexus in neutrophil invasion after traumatic brain injury. J. Cereb. Blood Flow Metab. 29, 1503-1516.

    Article  PubMed  CAS  Google Scholar 

  • Tacke, F. and Randolph, G. J. (2006) Migratory fate and differentiation of blood monocyte subsets. Immunobiology 211, 609-618.

    Article  PubMed  CAS  Google Scholar 

  • Tezuka, H. and Ohteki, T. (2010) Regulation of intestinal homeostasis by dendritic cells. Immunol. Rev. 234, 247-258.

    Article  PubMed  CAS  Google Scholar 

  • Toft-Hansen, H., Buist, R., Sun, X. J., Schellenberg, A., Peeling, J. and Owens, T. (2006) Metalloproteinases control brain inflammation induced by pertussis toxin in mice overexpressing the chemokine CCL2 in the central nervous system. J. Immunol. 177, 7242-7249.

    PubMed  CAS  Google Scholar 

  • Torres-Aguilar, H., Aguilar-Ruiz, S. R., Gonzalez-Perez, G., Munguia, R., Bajana, S., Meraz-Rios, M. A. and Sanchez-Torres, C. (2010) Tolerogenic dendritic cells generated with different immunosuppressive cytokines induce antigen-specific anergy and regulatory properties in memory CD4+ T cells. J. Immunol. 184, 1765-1775.

    Article  PubMed  CAS  Google Scholar 

  • Trebst, C., Sorensen, T. L., Kivisakk, P., Cathcart, M. K., Hesselgesser, J., Horuk, R., Sellebjerg, F., Lassmann, H. and Ransohoff, R. M. (2001) CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am. J. Pathol. 159, 1701-1710.

    Article  PubMed  CAS  Google Scholar 

  • Trifilo, M. J. and Lane, T. E. (2004) The CC chemokine ligand 3 regulates CD11c+CD11b+CD8alpha- dendritic cell maturation and activation following viral infection of the central nervous system: implications for a role in T cell activation. Virology 327, 8-15.

    Article  PubMed  CAS  Google Scholar 

  • van Zwam, M., Huizinga, R., Heijmans, N., van Meurs, M., Wierenga-Wolf, A. F., Melief, M. J., Hintzen, R. Q., t Hart, B. A., Amor, S., Boven, L. A. and Laman, J. D. (2009) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing experimental autoimmune encephalomyelitis. J. Pathol. 217, 543-551.

    Article  PubMed  Google Scholar 

  • Voo, K. S., Wang, Y. H., Santori, F. R., Boggiano, C., Arima, K., Bover, L., Hanabuchi, S., Khalili, J., Marinova, E., Zheng, B., Littman, D. R. and Liu, Y. J. (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc. Natl. Acad. Sci. U. S. A. 106, 4793-4798.

    Article  PubMed  Google Scholar 

  • Voswinkel, J., Assmann, G., Held, G., Pitann, S., Gross, W. L., Holl-Ulrich, K., Herlyn, K. and Mueller, A. (2008) Single cell analysis of B lymphocytes from Wegener’s granulomatosis: B cell receptors display affinity maturation within the granulomatous lesions. Clin. Exp. Immunol. 154, 339-345.

    Article  PubMed  CAS  Google Scholar 

  • Waibler, Z., Kalinke, U., Will, J., Juan, M. H., Pfeilschifter, J. M. and Radeke, H. H. (2007) TLR-ligand stimulated interleukin-23 subunit expression and assembly is regulated differentially in murine plasmacytoid and myeloid dendritic cells. Mol. Immunol. 44, 1483-1489.

    Article  PubMed  CAS  Google Scholar 

  • Weaver, C. T., Hatton, R. D., Mangan, P. R. and Harrington, L. E. (2007) IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821-852.

    Article  PubMed  CAS  Google Scholar 

  • Wei, G., Wei, L., Zhu, J., Zang, C., Hu-Li, J., Yao, Z., Cui, K., Kanno, Y., Roh, T. Y., Watford, W. T., Schones, D. E., Peng, W., Sun, H. W., Paul, W. E., O’Shea, J. J. and Zhao, K. (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30, 155-167.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R. O., Djuanda, E., Yow, H. Y. and Carare, R. O. (2009) Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117, 1-14.

    Article  PubMed  CAS  Google Scholar 

  • Weller, R. O., Galea, I., Carare, R. O. and Minagar, A. (2010) Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 17, 295-306.

    Article  PubMed  CAS  Google Scholar 

  • Wuest, T. R. and Carr, D. J. (2008) Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection. J. Immunol. 181, 7985-7993.

    PubMed  CAS  Google Scholar 

  • Xu, L., Kitani, A., Fuss, I. and Strober, W. (2007) Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J. Immunol. 178, 6725-6729.

    PubMed  CAS  Google Scholar 

  • Xu, X., Guo, Z., Jiang, X., Yao, Y., Gao, Q., Ding, Y. and Cao, X. (2010) Regulatory dendritic cells program generation of IL-4-producing alternative memory CD4 T cells with suppressive activity. Blood.

    Google Scholar 

  • Yang, X. O., Nurieva, R., Martinez, G. J., Kang, H. S., Chung, Y., Pappu, B. P., Shah, B., Chang, S. H., Schluns, K. S., Watowich, S. S., Feng, X. H., Jetten, A. M. and Dong, C. (2008) Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 29, 44-56.

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz, A., Fuchs, T., Dietel, B., Altendorf, R., Cicha, I., Stumpf, C., Schellinger, P. D., Blumcke, I., Schwab, S., Daniel, W. G., Garlichs, C. D. and Kollmar, R. (2010) Transient decrease in circulating dendritic cell precursors after acute stroke: potential recruitment into the brain. Clin. Sci. 118, 147-157.

    Article  Google Scholar 

  • Zaheer, A., Sahu, S. K., Wu, Y., Haas, J., Lee, K. and Yang, B. (2007) Diminished cytokine and chemokine expression in the central nervous system of GMF-deficient mice with experimental autoimmune encephalomyelitis. Brain Res. 1144, 239-247.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, J. and Paul, W. E. (2010) Heterogeneity and plasticity of T helper cells. Cell Res. 20, 4-12.

    Article  PubMed  CAS  Google Scholar 

  • Zozulya, A. L., Ortler, S., Fabry, Z., Sandor, M. and Wiendl, H. (2009a) The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAE. Eur. J. Immunol. 39, 1536-1543.

    Article  CAS  Google Scholar 

  • Zozulya, A. L., Ortler, S., Lee, J., Weidenfeller, C., Sandor, M., Wiendl, H. and Fabry, Z. (2009b) Intracerebral dendritic cells critically modulate encephalitogenic versus regulatory immune responses in the CNS. J. Neurosci. 29, 140-152.

    Article  CAS  Google Scholar 

  • Zozulya, A. L., Reinke, E., Baiu, D. C., Karman, J., Sandor, M. and Fabry, Z. (2007) Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP-1alpha chemokine and matrix metalloproteinases. J. Immunol. 178, 520-529.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Institutes of Health grants NS37570 and GM008349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin D Clarkson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clarkson, B.D., Héninger, E., Harris, M.G., Lee, J., Sandor, M., Fabry, Z. (2012). Innate-Adaptive Crosstalk: How Dendritic Cells Shape Immune Responses in the CNS. In: Lambris, J., Hajishengallis, G. (eds) Current Topics in Innate Immunity II. Advances in Experimental Medicine and Biology, vol 946. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0106-3_18

Download citation

Publish with us

Policies and ethics