Skip to main content

Bone Health and Orthopedic Surgery

  • Chapter
  • First Online:
Perioperative Care of the Orthopedic Patient
  • 1374 Accesses

Abstract

Traditionally, orthopedists have not evaluated the quality of bone prior to orthopedic procedures. Nonetheless, in recent years an assortment of pharmacological agents targeting bone quality have been developed and are in common use, mainly in the treatment of osteoporosis. Growing evidence suggests that the maximization of bone quality and health perioperatively will result in better surgical outcomes. This chapter reviews current knowledge concerning this clinical experience, examining specifically vitamin D, its putative role in orthopedic surgery; the use of various medications in the setting of total joint arthroplasty, in spinal fusion, and in the fracture repair is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith MD, Ross W, Ahern MJ. Missing a therapeutic window of opportunity: an audit of patients attending a tertiary teaching hospital with potentially osteoporotic hip and wrist fractures. J Rheumatol. 2001;28(11):2504–8.

    CAS  PubMed  Google Scholar 

  2. Castel H, Bonneh DY, Sherf M, Liel Y. Awareness of osteoporosis and compliance with management guidelines in patients with newly diagnosed low-impact fractures. Osteoporos Int. 2001;12(7):559–64.

    Article  CAS  PubMed  Google Scholar 

  3. Adachi JD, Rizzoli R, Boonen S, Li Z, Meredith MP, Chesnut 3rd CH. Vertebral fracture risk reduction with risedronate in post-menopausal women with osteoporosis: a meta-analysis of individual patient data. Aging Clin Exp Res. 2005;17(2):150–6.

    Article  CAS  PubMed  Google Scholar 

  4. Rebolledo BJ, Unnanuntana A, Lane JM. A comprehensive approach to fragility fractures. J Orthop Trauma. 2011;25(9):566–73.

    Article  PubMed  Google Scholar 

  5. Fini M, Giavaresi G, Salamanna F, et al. Harmful lifestyles on orthopedic implantation surgery: a descriptive review on alcohol and tobacco use. J Bone Miner Metab. 2011;29(6):633–44.

    Article  PubMed  Google Scholar 

  6. Bogunovic L, Kim AD, Beamer BS, Nguyen J, Lane JM. Hypovitaminosis D in patients scheduled to undergo orthopaedic surgery: a single-center analysis. J Bone Joint Surg Am. 2010;92(13):2300–4.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Breijawi N, Eckardt A, Pitton MB, et al. Bone mineral density and vitamin D status in female and male patients with osteoarthritis of the knee or hip. Eur Surg Res. 2009;42(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  8. Bergink AP, Uitterlinden AG, Van Leeuwen JP, et al. Vitamin D status, bone mineral density, and the development of radiographic osteoarthritis of the knee: the Rotterdam study. J Clin Rheumatol. 2009;15(5):230–7.

    Article  PubMed  Google Scholar 

  9. Unnanuntana A, Rebolledo BJ, Gladnick BP, et al. Does vitamin D status affect the attainment of in-hospital functional milestones after total hip arthroplasty? J Arthroplasty. 2012;27(3):482–9.

    Article  PubMed  Google Scholar 

  10. Diamond T, Wong YK, Golombick T. Effect of oral cholecalciferol 2,000 versus 5,000 IU on serum vitamin D, PTH, bone and muscle strength in patients with vitamin D deficiency. Osteoporos Int. 2013;24(3):1101–5.

    Article  CAS  PubMed  Google Scholar 

  11. Mastaglia SR, Seijo M, Muzio D, Somoza J, Nunez M, Oliveri B. Effect of vitamin D nutritional status on muscle function and strength in healthy women aged over sixty-five years. J Nutr Health Aging. 2011;15(5):349–54.

    Article  CAS  PubMed  Google Scholar 

  12. Muir SW, Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: a systematic review and meta-analysis. J Am Geriatr Soc. 2011;59(12):2291–300.

    Article  PubMed  Google Scholar 

  13. Glendenning P, Zhu K, Inderjeeth C, Howat P, Lewis JR, Prince RL. Effects of three monthly oral 150,000 IU cholecalciferol supplementation on falls, mobility and muscle strength in older postmenopausal women: a randomised controlled trial. J Bone Miner Res. 2012;27(1):170–6.

    Article  CAS  PubMed  Google Scholar 

  14. Lingard EA, Mitchell SY, Francis RM, et al. The prevalence of osteoporosis in patients with severe hip and knee osteoarthritis awaiting joint arthroplasty. Age Ageing. 2010;39(2):234–9.

    Article  PubMed  Google Scholar 

  15. Makinen TJ, Alm JJ, Laine H, Svedstrom E, Aro HT. The incidence of osteopenia and osteoporosis in women with hip osteoarthritis scheduled for cementless total joint replacement. Bone. 2007;40(4):1041–7.

    Article  PubMed  Google Scholar 

  16. Kamath S, Chang W, Shaari E, Bridges A, Campbell A, McGill P. Comparison of peri-prosthetic bone density in cemented and uncemented total knee arthroplasty. Acta Orthop Belg. 2008;74(3):354–9.

    PubMed  Google Scholar 

  17. Meek RM, Norwood T, Smith R, Brenkel IJ, Howie CR. The risk of peri-prosthetic fracture after primary and revision total hip and knee replacement. J Bone Joint Surg Br. 2011;93(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  18. Kim K, Kim YH, Park WM, Rhyu KH. Stress concentration near pin holes associated with fracture risk after computer navigated total knee arthroplasty. Comput Aided Surg. 2010;15(4–6):98–103.

    Article  CAS  PubMed  Google Scholar 

  19. Lee DH, Padhy D, Lee SH, Nha KW, Park JH, Han SB. Osteoporosis affects component positioning in computer navigation-assisted total knee arthroplasty. Knee. 2012;19(3):203–7.

    Article  PubMed  Google Scholar 

  20. Moritz N, Alm JJ, Lankinen P, Makinen TJ, Mattila K, Aro HT. Quality of intertrochanteric cancellous bone as predictor of femoral stem RSA migration in cementless total hip arthroplasty. J Biomech. 2011;44(2):221–7.

    Article  PubMed  Google Scholar 

  21. Popescu D, Ene R, Cirstoiu C. Resurfacing total hip replacement—a therapeutical approach in postmenopausal women with osteoporosis and hip arthrosis. J Med Life. 2011;4(2):178–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. McDonald MM, Dulai S, Godfrey C, Amanat N, Sztynda T, Little DG. Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone. 2008;43(4):653–62.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Mori S, Kaji Y, Kawanishi J, Akiyama T, Norimatsu H. Concentration of bisphosphonate (incadronate) in callus area and its effects on fracture healing in rats. J Bone Miner Res. 2000;15(10):2042–51.

    Article  CAS  PubMed  Google Scholar 

  24. Jorgensen NR, Schwarz P. Effects of anti-osteoporosis medications on fracture healing. Curr Osteoporos Rep. 2011;9(3):149–55.

    Article  PubMed  Google Scholar 

  25. Adachi JD, Lyles KW, Colon-Emeric CS, et al. Zoledronic acid results in better health-related quality of life following hip fracture: the HORIZON-recurrent fracture trial. Osteoporos Int. 2011;22(9):2539–49.

    Article  CAS  PubMed  Google Scholar 

  26. Bukata SV. Systemic administration of pharmacological agents and bone repair: what can we expect. Injury. 2011;42(6):605–8.

    Article  PubMed  Google Scholar 

  27. Barrett JG, Sample SJ, McCarthy J, Kalscheur VL, Muir P, Prokuski L. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats. J Orthop Res. 2007;25(8):1070–7.

    Article  CAS  PubMed  Google Scholar 

  28. Milgrom C, Finestone A, Novack V, et al. The effect of prophylactic treatment with risedronate on stress fracture incidence among infantry recruits. Bone. 2004;35(2):418–24.

    Article  CAS  PubMed  Google Scholar 

  29. Gerstenfeld LC, Sacks DJ, Pelis M, et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res. 2009;24(2):196–208.

    Article  CAS  PubMed  Google Scholar 

  30. Friedl G, Turner RT, Evans GL, Dobnig H. Intermittent parathyroid hormone (PTH) treatment and age-dependent effects on rat cancellous bone and mineral metabolism. J Orthop Res. 2007;25(11):1454–64.

    Article  CAS  PubMed  Google Scholar 

  31. Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1-34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res. 1999;14(6):960–8.

    Article  CAS  PubMed  Google Scholar 

  32. Aspenberg P, Genant HK, Johansson T, et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res. 2010;25(2):404–14.

    Article  CAS  PubMed  Google Scholar 

  33. Kim HJ, Lee HM, Kim HS, et al. Bone metabolism in postmenopausal women with lumbar spinal stenosis: analysis of bone mineral density and bone turnover markers. Spine (Phila Pa 1976). 2008;33(22):2435–9.

    Article  Google Scholar 

  34. Bennett GJ, Serhan HA, Sorini PM, Willis BH. An experimental study of lumbar destabilization. Restabilization and bone density. Spine (Phila Pa 1976). 1997;22(13):1448–53.

    Article  CAS  Google Scholar 

  35. Huang RC, Khan SN, Sandhu HS, et al. Alendronate inhibits spine fusion in a rat model. Spine (Phila Pa 1976). 2005;30(22):2516–22.

    Article  Google Scholar 

  36. Sama AA, Khan SN, Myers ER, et al. High-dose alendronate uncouples osteoclast and osteoblast function: a study in a rat spine pseudarthrosis model. Clin Orthop Relat Res. 2004(425):135–42.

    Google Scholar 

  37. Xue Q, Li H, Zou X, et al. The influence of alendronate treatment and bone graft volume on posterior lateral spine fusion in a porcine model. Spine (Phila Pa 1976). 2005;30(10):1116–21.

    Article  Google Scholar 

  38. Babat LB, McLain R, Milks R, Ferrara L, Sohn MJ. The effects of the antiresorptive agents calcitonin and pamidronate on spine fusion in a rabbit model. Spine J. 2005;5(5):542–7.

    Article  PubMed  Google Scholar 

  39. Bransford R, Goergens E, Briody J, Amanat N, Cree A, Little D. Effect of zoledronic acid in an L6-L7 rabbit spine fusion model. Eur Spine J. 2007;16(4):557–62.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Xue Q, Li H, Zou X, et al. Alendronate treatment improves bone-pedicle screw interface fixation in posterior lateral spine fusion: an experimental study in a porcine model. Int Orthop. 2010;34(3):447–51.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Xue QY, Ji Q, Li HS, et al. Alendronate treatment does not inhibit bone formation within biphasic calcium phosphate ceramics in posterolateral spinal fusion: an experimental study in porcine model. Chin Med J (Engl). 2009;122(22):2770–4.

    Google Scholar 

  42. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A. Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine. 2011;14(4):500–7.

    Article  PubMed  Google Scholar 

  43. Nakao S, Minamide A, Kawakami M, Boden SD, Yoshida M. The influence of alendronate on spine fusion in an osteoporotic animal model. Spine (Phila Pa 1976). 2011;36(18):1446–52.

    Article  Google Scholar 

  44. O’Loughlin PF, Cunningham ME, Bukata SV, et al. Parathyroid hormone (1-34) augments spinal fusion, fusion mass volume, and fusion mass quality in a rabbit spinal fusion model. Spine (Phila Pa 1976). 2009;34(2):121–30.

    Article  Google Scholar 

  45. Lehman Jr RA, Dmitriev AE, Cardoso MJ, et al. Effect of teriparatide [rhPTH(1,34)] and calcitonin on intertransverse process fusion in a rabbit model. Spine (Phila Pa 1976). 2010;35(2):146–52.

    Article  Google Scholar 

  46. Ohtori S, Inoue G, Orita S, et al. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine (Phila Pa 1976). 2012;37(23):E1464–8.

    Article  Google Scholar 

  47. Ohtori S, Inoue G, Orita S, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976). 2013;38(8):E487–92.

    Article  Google Scholar 

  48. Johnell O, Kannus P, Obrant KJ, Jarvinen M, Parkkari J, Nordic Orthopedic Federation. Management of the patient after an osteoporotic fracture: guidelines for orthopedic surgeons—consensus conference on treatment of osteoporosis for orthopedic surgeons, Nordic Orthopedic Federation, Tampere, Finland 2000. Acta Orthop Scand. 2001;72(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  49. http://www.ownthebone.org/.

  50. McLellan AR, Gallacher SJ, Fraser M, McQuillian C. The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int. 2003;14(12):1028–34.

    Article  PubMed  Google Scholar 

  51. Skedros JG. The orthopaedic surgeon’s role in diagnosing and treating patients with osteoporotic fractures: standing discharge orders may be the solution for timely medical care. Osteoporos Int. 2004;15(5):405–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda A. Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer New York

About this chapter

Cite this chapter

Russell, L.A. (2014). Bone Health and Orthopedic Surgery. In: MacKenzie, C., Cornell, C., Memtsoudis, S. (eds) Perioperative Care of the Orthopedic Patient. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0100-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0100-1_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0099-8

  • Online ISBN: 978-1-4614-0100-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics