Conventional Techniques for Maximizing Cycle Lengths

Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP)

Abstract

In this chapter, we review conventional stochastic and deterministic techniques that guarantee long cycles. First we explain the dithering approach, which belongs to the class of stochastic techniques. Then, we explain two deterministic techniques, namely setting the internal registers to predefined initial values and using prime modulus quantizers. These techniques yield longer cycles and thereby reduce the undesirable tones in the spectrum that arise when the period of the quantization error signal is short.

Keywords

Autocorrelation Summing 

References

  1. 1.
    F. De Jager, “Delta modulation-a method of PCM transmission using the one unit code,” Philips Research Report, vol. 7, pp. 442–466, 1952.Google Scholar
  2. 2.
    C. C. Cutler, “Transmission system employing quantization,” U.S. Patent 2,927,962, 1960.Google Scholar
  3. 4.
    S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulaion. New York: IEEE Press, 1997.Google Scholar
  4. 5.
    M. Kozak and I. Kale, Oversampled Delta-Sigma Modulators, Analysis, Applications and Novel Topologies. Boston: Kluwer Academic Publishers, 2003.Google Scholar
  5. 8.
    D. Reefman, J. Reiss, E. Janssen, and M. Sandler, “Description of limit cycles in sigma-delta modulators,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 52, no. 6, pp. 1211–1223, June 2005.CrossRefMathSciNetGoogle Scholar
  6. 9.
    S. Pamarti and I. Galton, “LSB dithering in MASH delta-sigma D/A converters,” IEEE Transactions on Circuits and Systems I, vol. 54, no. 4, pp. 779–790, Apr. 2007.CrossRefMathSciNetGoogle Scholar
  7. 10.
    J. Reiss and M. Sandler, “Detection and removal of limit cycles in sigma delta modulators,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 10, pp. 3119–3130, 2008.CrossRefMathSciNetGoogle Scholar
  8. 11.
    M. J. Borkowski, T. A. D. Riley, J. Hakkinen, and J. Kostamovaara, “A practical delta sigma modulator design method based on periodical behavior analysis,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, pp. 626–630, Oct. 2005.CrossRefGoogle Scholar
  9. 12.
    M. Borkowski, Digital Δ Σ Modulation: Variable Modulus and Tonal Behavior in a Fixed-Point Digital Environment. Oulu: Oulu University Press, 2008.Google Scholar
  10. 13.
    K. Hosseini and M. P. Kennedy, “Mathematical analysis of digital MASH delta-sigma modulators for fractional-N frequency synthesizers,” in Proceedings of PRIME 2006, Lecce, Italy, June 2006, pp. 309–312.Google Scholar
  11. 14.
    K. Hosseini and M. P. Kennedy, “Calculation of sequence lengths in MASH 1-1-1 digital delta sigma modulators with a constant input,” in Proceedings of PRIME 2007, Bordeaux, France, July 2007, pp. 13–16.Google Scholar
  12. 15.
    P. Level and S. R. L. Camino, “Digital to digital sigma-delta modulator and digital frequency synthesizer incorporating the same,” US Patent 6,822,593 B2, Nov. 23, 2004.Google Scholar
  13. 16.
    K. Hosseini and M. P. Kennedy, “Mathematical analysis of a prime modulus quantizer MASH digital delta-sigma modulator,” IEEE Transactions on Circuits and Systems Part II: Express Briefs, vol. 54, no. 12, pp. 1105–1109, Dec. 2007.CrossRefGoogle Scholar
  14. 37.
    B. D. Muer and M. Steyaert, “A CMOS monolithic Δ Σ controlled fractional-N frequency synthesizer for DCS-1800,” IEEE Journal of Solid-State Circuits, vol. 37, no. 7, pp. 835–844, July 2002.CrossRefGoogle Scholar
  15. 38.
    S. Pamarti, L. Jansson, and I. Galton, “A wideband 2.4-GHz Δ Σ fractional-N PLL with 1 Mb/s in-loop modulation,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 49–62, Jan. 2004.CrossRefGoogle Scholar
  16. 58.
    M. J. Borkowski and J. Kostamovaara, “On randomization of digital delta-sigma modulators with DC inputs,” in Proceedings of ISCAS 2006, Kos, Greece, May 2006, pp. 3770–3773.Google Scholar
  17. 59.
    J. C. Candy and G. C. Temes, Oversampling Delta Sigma Data Converters Theory, Design and Simulation. New York: IEEE Press, 1992.Google Scholar
  18. 61.
    S. Pamarti, J. Welz, and I. Galton, “Statistics of the quantization noise in 1-bit dithered single-quantizer digital delta-sigma modulators,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 54, no. 3, pp. 492–503, Mar. 2007.CrossRefGoogle Scholar
  19. 63.
    S. Willingham et al., “An integrated 2.5-GHz Δ Σ frequency synthesizer with 5 μs settling and 2 Mb/s closed loop modulation,” in Digest of Technical Papers, IEEE International Solid-State Circuits Conference, vol. 43, pp. 200–201, 2000.CrossRefGoogle Scholar
  20. 64.
    H. Hsieh and C.-L. Lin, “Spectral shaping of dithered quantization errors in sigma-delta modulators,” IEEE Transactions on Circuits and Systems-I: Regular Papers, vol. 54, no. 5, pp. 972–980, May 2007.CrossRefGoogle Scholar
  21. 65.
    S. R. Norsworthy, “Effective dithering of delta-sigma modulators,” in Proceedings of ISCAS’92, vol. 3, pp. 1304–1307, May 1992.Google Scholar
  22. 67.
    R. M. Gray, “Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input,” IEEE Transactions on Communications, vol. 37, pp. 588–599, Jun. 1989.CrossRefGoogle Scholar
  23. 68.
    P. W. M. Wong and R. M. Gray, “Two-stage sigma-delta modulation,” IEEE Transactions on Acoustics, Speech, & Signal Processing, vol. 38, pp. 1937–1952, Nov. 1990.MATHCrossRefGoogle Scholar
  24. 69.
    W. Chua, P. W. M. Wong, and R. M. Gray, “Multi-stage sigma-delta modulation,” IEEE Transactions of Information Theory, vol. 35, pp. 784–796, July 1989.CrossRefGoogle Scholar
  25. 70.
    N. He, F. Kuhlmann, and A. Buzo, “Double-loop sigma-delta modulation with DC input,” IEEE Transactions on Communications, vol. COM-38, pp. 487–495, Apr. 1990.CrossRefMathSciNetGoogle Scholar
  26. 71.
    N. He, F. Kuhlmann, and A. Buzo, “Multiloop sigma-delta quantization,” IEEE Transactions of Information Theory, vol. 38, pp. 1015–1028, May 1992.MATHCrossRefGoogle Scholar
  27. 72.
    B. Fitzgibbon and M. P. Kennedy, “Calculation of cycle lengths in higher-order MASH DDSMs with constant inputs,” in Proceedings of ICECS, Athens, Greece, May 2010, pp. 484–487.Google Scholar
  28. 73.
    B. Fitzgibbon and M. P. Kennedy, “Calculation of cycle lengths in higher-order error feedback modulators with constant inputs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 58, pp. 6–10, Jan. 2011.CrossRefGoogle Scholar
  29. 74.

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Cypress SemiconductorCorkIreland
  2. 2.University College CorkCorkIreland

Personalised recommendations