AETHER: Self-Adaptive Networked Entities: Autonomous Computing Elements for Future Pervasive Applications and Technologies

  • Christian Gamrat
  • Jean-Marc Philippe
  • Chris Jesshope
  • Alex Shafarenko
  • Labros Bisdounis
  • Umberto Bondi
  • Alberto Ferrante
  • Joan Cabestany
  • Michael Hübner
  • Juha Pärsinnen
  • Jiri Kadlec
  • Martin Danek
  • Benoit Tain
  • Susan Eisenbach
  • Michel Auguin
  • Jean-Philippe Diguet
  • Eric Lenormand
  • Jean-Luc Roux
Chapter

Abstract

The ÆTHER project has laid the foundation of a complete new framework for designing and programming computing resources that live in changing ­environments and need to re-configure their objectives in a dynamic way. This chapter contributes to a strategic research agenda in the field of self-adaptive computing systems. It brings inputs to the reconfigurable hardware community and proposes directions to go for reconfigurable hardware and research on self-adaptive computing; it tries to identify some of the most promising future technologies for reconfiguration, while pointing out the main foreseen Challenges for reconfigurable hardware. This chapter presents the main solutions the ÆTHER project proposed for some of the major concerns in trying to engineer a self-adaptive computing system. The text exposes the ÆTHER vision of self-adaptation and its requirements. It describes and discusses the proposed solutions for tackling self-adaptivity at the various levels of abstractions. It exposes how the developed technologies could be put together in a real methodology and how self-adaptation could then be used in potential applications. Finally and based on lessons learned from ÆTHER, we discuss open issues and research opportunities and put those in perspective along other investigations and roadmaps.

Keywords

Migration Radar Production Line Metaphor Aether 

References

  1. 1.
    “IBM Research Autonomic Computing.” http://www.research.ibm.com/autonomic/
  2. 2.
    J. Von Neumann, Theory of Self-Reproducing Automata, University of Illinois Press, 1966.Google Scholar
  3. 3.
    G.E. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, 1965.Google Scholar
  4. 4.
    J. Kephart and D. Chess, “The vision of autonomic computing,” Computer, vol. 36, 2003, pp. 41–50.CrossRefGoogle Scholar
  5. 5.
    Edsger W. Dijkstra, “On the role of scientific thought”, in Dijkstra, Edsger W., Selected writings on Computing: A Personal Perspective, New York, NY, USA: Springer-Verlag New York, Inc., pp. 60–66, 1982Google Scholar
  6. 6.
    Clemens Grelck, Sven-Bodo Scholz, Alex Shafarenko, “Asynchronous Stream Processing with S-Net”, International Journal of Parallel Programming 38(1), pp. 38-67, Springer-Verlag, Dordrecht, Netherlands, 2010.Google Scholar
  7. 7.
  8. 8.
    David B. Skillicorn, Foundations of parallel programming, ISBN-13: 9780521455114, Cambridge University Press, Cambridge, England, 1994.Google Scholar
  9. 9.
    John A. Sharp (Ed.), Data flow computing, ISBN:0-89391-654-4, Ablex Publishing Corp., Norwood, NJ, USA, 1992.Google Scholar
  10. 10.
    C.R. Jesshope. A model for the design and programming of multi-cores, in L. Grandinetti, editor, High Performance Computing and Grids in Action, volume 16 of Advances in Parallel Computing, pages 37–55. IOS Press, 2008.Google Scholar
  11. 11.
    A. Bolychevsky, C.R. Jesshope, and V.B. Muchnick. Dynamic scheduling in RISC architectures. IEE Trans. E, Computers and Digital Techniques (143):309–317, 1996.CrossRefGoogle Scholar
  12. 12.
    Chris R. Jesshope. MICROGRIDS: Foundations for massively parallel on-chip architectures using microthreading. http://www.nwo.nl/nwohome.nsf/pages/NWOP_6DSBSV.
  13. 13.
    ÆTHER: Self-adaptive embedded technologies for pervasive computing architectures. http://www.aether-ist.org.
  14. 14.
    C. R. Jesshope, “μTC an intermediate language for programming chip multiprocessors,” in Proceedings of the Pacific Computer Systems Architecture Conference (ACSAC’06), LNCS 4186, 2006, pp. 147–160.Google Scholar
  15. 15.
    Apple-CORE: Architecture paradigms and programming languages for efficient programming of multiple cores. http://www.apple-core.info/.
  16. 16.
    Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array language for efficient multithreaded execution. International Journal of Parallel Programming, 34(4):383–427, 2006.MATHCrossRefGoogle Scholar
  17. 17.
    Clemens Grelck and Sven-Bodo Scholz. SAC: off-the-shelf support for data-parallelism on multicores. In DAMP’07: Proceedings of the 2007 workshop on Declarative aspects of multicore programming, pages 25–33, New York, NY, USA, 2007. ACM.Google Scholar
  18. 18.
    Dimitris Saougkos, Despina Evgenidou, and George Manis. Specifying loop transformations for C2μTC source-to-source compiler. In 14th Workshop on Compilers for Parallel Computing (CPC’09), Zurich, Switzerland. IBM Research Center, 2009.Google Scholar
  19. 19.
    ÆTHER Deliverable D1.1.1, First research report on SANE hardware architecture, issued 31/12/2006.Google Scholar
  20. 20.
    Chris Jesshope, Jean-Marc Philippe, and Michiel Tol, “An Architecture and Protocol for the Management of Resources in Ubiquitous and Heterogeneous Systems Based on the SVP Model of Concurrency”, In Proceedings of the 8th international workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS ‘08), Mladen Berekovic, Nikitas Dimopoulos, and Stephan Wong (Eds.). Springer-Verlag, Berlin, Heidelberg, 218–228.Google Scholar
  21. 21.
    L. Li, V. Narayanan, M. Kandemir, and M. J. Irwin, “Adaptive Error Protection for Energy Efficiency”, In the Proceedings of the International Conference on Computer Aided Design (ICCAD’03), November, 2003.Google Scholar
  22. 22.
    S. Lopez-Buedo, J. Garrido, and E. I. Boemo, “Dynamically Inserting, Operating, and Eliminating Thermal Sensors of FPGA-Based Systems”, IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 4, December 2002Google Scholar
  23. 23.
    S. Mondal, R. Mukherjee, and S.O. Memik, “Fine-grain thermal profiling and sensor insertion for FPGAs”, Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’06), pp. 4387-4390, 2006Google Scholar
  24. 24.
    Xilinx, “Virtex-5 FPGA System Monitor”, November 7, 2008 http://www.xilinx.com/support/documentation/user_guides/ug192.pdf
  25. 25.
    K. Paulsson, M. Hübner, J. Becker, J.-M. Philippe, C. Gamrat, “On-Line Routing of Reconfigurable Functions for Future Self-Adaptive Systems – Investigations within the ÆTHER Project,” International Conference on Field Programmable Logic and Applications (FPL 2007), pp.415-422, 27-29 Aug. 2007.Google Scholar
  26. 26.
    Jean-Marc Philippe, Benoit Tain, and Christian Gamrat, “A self-reconfigurable FPGA-based platform for prototyping future pervasive systems”, In Proceedings of the 9th international conference on Evolvable systems: from biology to hardware (ICES’10), Gianluca Tempesti, Andy M. Tyrrell, and Julian F. Miller (Eds.). Springer-Verlag, Berlin, Heidelberg, 262–273.Google Scholar
  27. 27.
    L. Zhang and C. Jesshope, “On-Chip COMA Cache-coherence Protocol for Microgrids of Microthreaded Cores”, Eds. Bouge et. al., Proc Euro Par 2007 Workshops, LNCS Volume 4854, Springer, pp 38-48, 2007.Google Scholar
  28. 28.
    Martin Danek, Jean-Marc Philippe, Petr Honzik, Christian Gamrat and Roman Bartosinski, “Self-Adaptive Networked Entities for Building Pervasive Computing Architectures”, Evolvable Systems: From Biology to Hardware, Lecture Notes in Computer Science, 2008, Volume 5216/2008, 94–105Google Scholar
  29. 29.
    M. Luck, P. McBurney, O. Shehory, S. Willmott and The AgentLink Community, “Agent Technology Roadmap, a roadmap for agent based computing”, September 2005Google Scholar
  30. 30.
    The International Technology Roadmap for Semiconductor, ITRS Update 2008, http://www.itrs.net/, 2009
  31. 31.
    G. Agnus et al., “Two-Terminal Carbon Nanotube Programmable Devices for Adaptive Architectures,” Advanced Materials, vol. 22, no. 6, pp. 702-706, 2010.CrossRefGoogle Scholar
  32. 32.
    Akinwande, D. et al. “Monolithic Integration of CMOS VLSI and Carbon Nanotubes for Hybrid Nanotechnology Applications.” Nanotechnology, IEEE Transactions on 7, 636–639 (2008).CrossRefGoogle Scholar
  33. 33.
    The Information Society Technologies Advisory Group, “European Challenges and Flagships 2020 and beyond”, July 2009.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christian Gamrat
    • 1
  • Jean-Marc Philippe
    • 2
  • Chris Jesshope
    • 3
  • Alex Shafarenko
    • 4
  • Labros Bisdounis
    • 5
  • Umberto Bondi
    • 6
  • Alberto Ferrante
    • 6
  • Joan Cabestany
    • 7
  • Michael Hübner
    • 8
  • Juha Pärsinnen
    • 9
  • Jiri Kadlec
    • 10
  • Martin Danek
    • 10
  • Benoit Tain
    • 2
  • Susan Eisenbach
    • 11
  • Michel Auguin
    • 12
  • Jean-Philippe Diguet
    • 12
  • Eric Lenormand
    • 13
  • Jean-Luc Roux
    • 14
  1. 1.CEA, LIST, Centre de SaclayGif sur Yvette CedexFrance
  2. 2.CEA, LISTParisFrance
  3. 3.University of AmsterdamAmsterdamThe Netherlands
  4. 4.University of HertfordshireHatfieldUK
  5. 5.INTRACOMAthensGreece
  6. 6.Università della Svizzera italianaLuganoSwitzerland
  7. 7.Universitat Politècnica de CatalunyaCataloniaSpain
  8. 8.Institut für Technik der Informationsverarbeitung, Fakultät für Elektrotechnik und Informationstechnik, Karlsruher Institut für Technologie (KIT)KarlsruheGermany
  9. 9.VTTEspooFinland
  10. 10.UTIA AV CROstravaCzech Republic
  11. 11.Imperial CollegeLondonUK
  12. 12.CNRSOrsayFrance
  13. 13.THALESParisFrance
  14. 14.ACIESParisFrance

Personalised recommendations