Skip to main content

On Solutions of Some Generalizations of the Goła̧b–Schinzel Equation

  • Chapter
  • First Online:
Functional Equations in Mathematical Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 52))

Abstract

This paper is a survey devoted to the functional equation

$$f(x + M(f(x))y) = f(x)f(y),$$

which ‘connects’ the Goła̧b–Schinzel equation with the exponential one, and to its generalization

$$f(x + M(f(x))y) = H(f(x),f(y)).$$

Our considerations refer to the paper :  Brzdȩk, J.: The Goła̧b–Schinzel equation and its generalizations. Aequationes Math. 70, 14–24 (2005)

Mathematics Subject Classification (2000): Primary 39B52

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aczél, J.: Lectures on Functional Equations and their Applications. Academic Press (1966)

    Google Scholar 

  2. Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Encyclopedia of Mathematics and its Applications v. 31. Cambridge University Press (1989)

    Google Scholar 

  3. Baron, K.: On the continuous solutions of the Goła̧b–Schinzel equation. Aequationes Math. 38, 155–162 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brillouët–Belluot, N., Brzdȩk, J.: On continuous solutions and stability of a conditional Goła̧b–Schinzel equation. Publ. Math. Debrecen 72, 441–450 (2008)

    Google Scholar 

  5. Brillouët–Belluot, N., Brzdȩk, J., Chudziak, J.: On continuous solutions of a class of conditional equations. Publ. Math. Debrecen 75, 11–22 (2009)

    Google Scholar 

  6. Brillouët, N., Dhombres, J.: Équations fonctionnelles et recherche de sous–groupes. Aequationes Math. 31, 253–293 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brzdȩk, J.: Subgroups of the group Z n and a generalization of the Goła̧b–Schinzel functional equation. Aequationes Math. 43, 59–71 (1992)

    Article  MathSciNet  Google Scholar 

  8. Brzdȩk, J.: Some remarks on solutions of the functional equation \(f(x + f{(x)}^{n}y) = tf(x)f(y)\). Publ. Math. Debrecen 43, 147–160 (1993)

    MathSciNet  Google Scholar 

  9. Brzdȩk, J.: On solutions of the Goła̧b–Schinzel functional equation. Publ. Math. Debrecen 44, 235–241 (1994)

    MathSciNet  Google Scholar 

  10. Brzdȩk, J.: The Christensen measurable solutions of a generalization of the Goła̧b–Schinzel functional equation. Ann. Polon. Math. 64, 195–205 (1996)

    MathSciNet  Google Scholar 

  11. Brzdȩk, J.: Bounded solutions of the Goła̧b–Schinzel equation. Aequationes Math. 59, 248–254 (2000)

    Article  MathSciNet  Google Scholar 

  12. Brzdȩk, J.: On the continuous solutions of a generalization of the Goła̧b–Schinzel equation. Publ. Math. Debrecen 63, 421–429 (2003)

    MathSciNet  Google Scholar 

  13. Brzdȩk, J.: A generalization of addition formulae. Acta Math. Hungar. 101, 281–291 (2003)

    Article  MathSciNet  Google Scholar 

  14. Brzdȩk, J.: The Goła̧b–Schinzel equation and its generalizations. Aequationes Math. 70, 14–24 (2005)

    Article  MathSciNet  Google Scholar 

  15. Brzdȩk, J.: A remark on solutions of a generalization of the addition formulae. Aequationes Math. 71, 288–293 (2006)

    Article  MathSciNet  Google Scholar 

  16. Brzdȩk, J.: On the quotient stability of a family of functional equations. Nonlinear Anal. 71, 4396–4404 (2009)

    Article  MathSciNet  Google Scholar 

  17. Brzdȩk, J.: On stability of a family of functional equaions. Acta Math. Hungar. (128, 139–149 (2010), DOI: 10.1007/s10474-010-9169-8

    Google Scholar 

  18. Brzdȩk, J., Mureńko, A.: On a conditional Goła̧b–Schinzel equation. Arch. Math. (Basel) 84, 503–511 (2005)

    Google Scholar 

  19. Charifi, A., Bouikhalene, B., Kabbaj, S., Rassias, J.M.: On the stability of a pexiderized Goła̧b–Schinzel equation. Comput. Math. Appl. 59, 3193–3202 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chudziak, J.: Approximate solutions of the genearalized Goła̧b–Schinzel functional equation. J. Approx. Theory 136, 21–25 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chudziak, J.: On a functional inequality related to the stability problem for the Goła̧b–Schinzel equation. Publ. Math. Debrecen 67, 199–208 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Chudziak, J.: Stability of the generalized Goła̧b–Schinzel equation. Acta Math. Hungar. 113, 133–144 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chudziak, J.: Semigroup–valued solutions of the Goła̧b–Schinzel functional equation. Abh. Math. Sem. Univ. Hamburg 76, 91–98 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chudziak, J.: Associative solutions of a composite generalization of addition formulae. Acta Math. Hungar. 117, 141–152 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chudziak, J.: Stability problem for the Goła̧b–Schinzel type functional equations. J. Math. Anal. Appl. 339, 454–460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chudziak, J., Tabor, J.: On the stability of the Goła̧b–Schinzel functional equation. J. Math. Anal. Appl. 302, 196–200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Daróczy, Z.: Az \(f[x + yf(x)] = f(x)f(y)\) függvenyegyenlet folytones megoldasairol Hilbert – terekben. Matematikai Lapok 17, 339–343 (1966)

    MathSciNet  MATH  Google Scholar 

  28. Gebert, H.: A direct proof of a theorem of K. Baron. Ann. Math. Sil. 9, 101–103 (1995)

    MathSciNet  Google Scholar 

  29. Ger, R.: A collection of problems in stability theory. In: Report of Meeting (The Thirty–Eight International Symposium on Functional Equations, June 11–18, 2000, Noszvaj, Hungary), Aequationes Math. 61, 284 (2001)

    Google Scholar 

  30. Ger, R.: Goła̧b–Schinzel equation almost everywhere. In: Report of Meeting (The Forty–Forth International Symposium of Functional Equations, May 14–20, 2006, Louisville, Kentucky, USA), Aequationes Math. 73, 178 (2007)

    Google Scholar 

  31. Gheorghiu, O.E., Goła̧b, S.: Über ein System von Funktionalgleichungen. Ann. Polon. Math. 17, 223–243 (1966)

    Google Scholar 

  32. Goła̧b, S., Schinzel, A.: Sur l’équation fonctionnelle \(f(x + f(x)y) = f(x)f(y)\). Publ. Math. Debrecen 6, 113–125 (1959)

    Google Scholar 

  33. Jabłońska, E.: Continuity of Lebesgue measurable solutions of a generalized Goła̧b–Schinzel equation. Demonstratio Math. 39, 91–96 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Jabłońska, E.: On solutions of a generalization of the Goła̧b–Schinzel equation. Aequationes Math. 71, 269–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Jabłońska, E.: A short note concerning solutions of a generalization of the Goła̧b–Schinzel equation. Aequationes Math. 74, 318–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jabłońska, E.: Functions having the Darboux property and satisfying some functional equation. Colloq. Math. 114, 113–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jabłońska, E.: Bounded solutions of a generalized Goła̧b–Schinzel equation. Demonstratio Math. 42, 533–547 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Jabłońska, E.: Solutions of some functional equation bounded on nonzero Christensen measurable sets. Acta Math. Hungar. 125, 113–119 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jabłońska, E.: Christensen measurable solutions of some functional equation. Nonlinear Anal. 75, 2465–2473 (2010)

    Google Scholar 

  40. Jabłońska, E.: Solutions of a Goła̧b–Schinzel–type functional equation bounded on ’big’ sets in an abstract sense. Bull. Aust. Math. Soc. 81, 430–441 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Jabłońska, E.: Baire measurable solutions of a generalized Goła̧b–Schinzel equation. Commentationes Math. 50, 69–72 (2010)

    MATH  Google Scholar 

  42. Jabłońska, E.: Christensen measurability and some functional equations. Aequationes Math. 81, 155–165 (2011)

    Google Scholar 

  43. Javor, P.: On the general solution of the functional equation \(f(x + yf(x)) = f(x)f(y)\). Aequationes Math. 1, 235–238 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  44. Javor, P.: Continuous solutions of the functional equation \(f(x + yf(x)) = f(x)f(y)\). In: Proc. Internat. Sympos. on Topology and its Applications (Herceg–Novi, 1968) 206–209, Savez Drǔstava Mat. Fiz. i Astronom., Belgrade (1969)

    Google Scholar 

  45. Jones, F.B.: Connected and disconnected plane sets and the functional equation \(f(x + y) = f(x) + f(y)\). Bull. Amer. Math. Soc. 48, 115–120 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Cauchy’s equation and Jensen’s inequality. Państwowe Wydawnictwo Naukowe & Uniwersytet Śla̧ski (1985)

    Google Scholar 

  47. Mureńko, A.: On solutions of a common generalization of the Goła̧b–Schinzel equation and of the addition formulae. J. Math. Anal. Appl. 341, 1236–1240 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Mureńko, A.: On the general solution of a generalization of the Goła̧b–Schinzel equation. Aequationes Math. 77, 107–118 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Plaumann, P., Strambach, S.: Zweidimensionale Quasialgebren mit Nullteilern. Aequationes Math. 15, 249–264 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  50. Popa, C.G.: Sur l’équation fonctionnelle \(f(x + f(x)y) = f(x)f(y)\). Ann. Polon. Math. 17, 193–198 (1965)

    MathSciNet  MATH  Google Scholar 

  51. Vincze, E.:Über die Lösung der Funktionalgleichung \(f(y + xg(y)) = L(h(x),k(y))\). Ann. Polon. Math. 18, 115–119 (1966)

    Google Scholar 

  52. Wołodźko, S.: Solution générale de l’équation fonctionnelle \(f[x + yf(x)] = f(x)f(y)\). Aequationes Math. 2, 12–29 (1968)

    MathSciNet  MATH  Google Scholar 

  53. Wołodźko, S.: O cia̧głych rozwia̧zaniach równania funkcyjnego \(f[x + yf(x)] = f(x)f(y)\) w zespolonej przestrzeni liniowej unormowanej. Rocznik Nauk.–Dydakt. Prace Mat. 6, 199–205 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliza Jabłońska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jabłońska, E. (2011). On Solutions of Some Generalizations of the Goła̧b–Schinzel Equation. In: Rassias, T., Brzdek, J. (eds) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications(), vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0055-4_32

Download citation

Publish with us

Policies and ethics