Skip to main content

On the Stability of Polynomial Equations

  • Chapter
  • First Online:
Functional Equations in Mathematical Analysis

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 52))

  • 1589 Accesses

Abstract

In this article we prove the Hyers–Ulam type stability for the following two equations with real coefficients:

$${a}_{n}{x}^{n} + {a}_{ n-1}{x}^{n-1} + \cdots + {a}_{ 1}x + {a}_{0} = 0\quad \mbox{ and }\quad {e}^{x} + \alpha x + \beta = 0$$

on a real interval [a, b]. More precisely, we show that if x is an approximate solution of the equation \({a}_{n}{x}^{n} + {a}_{n-1}{x}^{n-1} + \cdots + {a}_{1}x + {a}_{0} = 0\) (resp. \({e}^{x} + \alpha x + \beta = 0)\), then there exists an exact solution of the equation near x.

Mathematics Subject Classification(2000): Primary 39B82; Secondary 34K20, 26D10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki, T.: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2, 64–66 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Czerwik, S.: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge, NJ (2002)

    Book  MATH  Google Scholar 

  3. Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  Google Scholar 

  4. Hyers, D.H., Isac, G., Rassias, Th.M.: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)

    Book  MATH  Google Scholar 

  5. Jung, S.-M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)

    MATH  Google Scholar 

  6. Li, Y., Hua, L.: Hyers–Ulam stability of a polynomial equation. Banach J. Math. Anal. 3, 86–90 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Milovanovic, G.V., Mitrinovic, D.S., Rassias, Th.M.: Topics in Polynomials: Extremal Problems, Inequalities, Zeros. World Scientific Publishing Company, Singapore, New Jersey, London (1994)

    Book  MATH  Google Scholar 

  8. Rassias, Th.M.: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rassias, Th.M.: On the stability of functional equations and a problem of Ulam. Acta Appl. Math. 62, 23–130 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ulam, S.M.: Problems in Modern Mathematics. Science Ed. Wiley, New York (1940)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Najati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Najati, A., Rassias, T.M. (2011). On the Stability of Polynomial Equations. In: Rassias, T., Brzdek, J. (eds) Functional Equations in Mathematical Analysis. Springer Optimization and Its Applications(), vol 52. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0055-4_18

Download citation

Publish with us

Policies and ethics